【題目】(方法回顧)
課本研究三角形中位線性質(zhì)的方法
已知:如圖①, 已知中,,分別是,兩邊中點(diǎn).
求證:,
證明:延長(zhǎng)至點(diǎn),使, 連按.可證:( 。
由此得到四邊形為平行四邊形, 進(jìn)而得到求證結(jié)論
(1)請(qǐng)根據(jù)以上證明過(guò)程,解答下列兩個(gè)問(wèn)題:
①在圖①中作出證明中所描述的輔助線(請(qǐng)用鉛筆作輔助線);
②在證明的括號(hào)中填寫理由(請(qǐng)?jiān)?/span>,,,中選擇) .
(問(wèn)題拓展)
(2)如圖②,在等邊中, 點(diǎn)是射線上一動(dòng)點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),把線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,點(diǎn)是線段的中點(diǎn),連接、.
①請(qǐng)你判斷線段與的數(shù)量關(guān)系,并給出證明;
②若,求線段長(zhǎng)度的最小值.
【答案】【方法回顧】(1)①在圖①中作出證明中所描述的輔助線,見(jiàn)解析;②;(2)①,證明見(jiàn)解析;②線段長(zhǎng)度的最小值為.
【解析】
(1)①根據(jù)題意畫出輔助線即可;
②由題可知判斷全等的條件是;
(2)①延長(zhǎng)至點(diǎn),使得,連接,,證明,得到,由繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,可得到為等邊三角形,可推出為等邊三角形,得到;
②連接,取的中點(diǎn),連接作射線,由為等腰三角形,,得到,由點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),得到,當(dāng)時(shí),最短,在中,,.
(1)①在圖①中作出證明中所描述的輔助線如圖所示:
②.
(2)①,
延長(zhǎng)至點(diǎn),使得,
連接,,
點(diǎn)為的中點(diǎn),
,
,,
,
,,
,
繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,
,,
,
為等邊三角形,
, ,
,
,
,
,
,,
,
為等邊三角形,
;
②連接,取的中點(diǎn),連接作射線,
為等腰三角形,,
,
點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),
,
,
點(diǎn)的軌跡為射線,且,
當(dāng)時(shí),最短,
,
,
在中,
,
,
即線段長(zhǎng)度的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在籃球比賽中,東東投出的球在點(diǎn)A處反彈,反彈后球運(yùn)動(dòng)的路線為拋物線的一部分(如圖1所示建立直角坐標(biāo)系),拋物線頂點(diǎn)為點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式.
(2)當(dāng)球運(yùn)動(dòng)到點(diǎn)C時(shí)被東東搶到,CD⊥x軸于點(diǎn)D,CD=2.6m.
①求OD的長(zhǎng).
②東東搶到球后,因遭對(duì)方防守?zé)o法投籃,他在點(diǎn)D處垂直起跳傳球,想將球沿直線快速傳給隊(duì)友華華,目標(biāo)為華華的接球點(diǎn)E(4,1.3).東東起跳后所持球離地面高度h1(m)(傳球前)與東東起跳后時(shí)間t(s)滿足函數(shù)關(guān)系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在點(diǎn)F(1.5,0)處攔截,他比東東晚0.3s垂直起跳,其攔截高度h2(m)與東東起跳后時(shí)間t(s)的函數(shù)關(guān)系如圖2所示(其中兩條拋物線的形狀相同).東東的直線傳球能否越過(guò)小戴的攔截傳到點(diǎn)E?若能,東東應(yīng)在起跳后什么時(shí)間范圍內(nèi)傳球?若不能,請(qǐng)說(shuō)明理由(直線傳球過(guò)程中球運(yùn)動(dòng)時(shí)間忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的盒子中裝有兩個(gè)紅球和一個(gè)藍(lán)球.這些球除顏色外都相同.
(1)從中隨機(jī)摸出一個(gè)球.記下顏色后放回.再?gòu)闹须S機(jī)摸出一個(gè)球.
①請(qǐng)用列表法或樹(shù)狀圖法,求第一次摸到藍(lán)球,第二次摸到紅球的概率;
②請(qǐng)直接寫出兩次摸到的球的顏色能配成紫色的概率 .
(2)從中隨機(jī)摸出一個(gè)球,記下顏色后不放回.再?gòu)闹须S機(jī)摸出一個(gè)球,請(qǐng)直接寫出兩次摸到的球的顏色能配成紫色的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形ABCD繞點(diǎn)A(0,6)旋轉(zhuǎn),當(dāng)點(diǎn)B落在x軸上時(shí),點(diǎn)C剛好落在反比例函數(shù)(k≠0,x>0)的圖像上.已知sin∠OAB=.
(1)求反比例函數(shù)的表達(dá)式;
(2)反比例函數(shù)的圖像是否經(jīng)過(guò)AD邊的中點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在矩形紙片中, , 點(diǎn),分別是,的中點(diǎn), 點(diǎn),分別在,上, 且.將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)四邊形為菱形時(shí), 則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長(zhǎng)為1,點(diǎn)、、、、、均在格點(diǎn)上,在圖①、圖②、圖③中,只用無(wú)刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點(diǎn)均在格點(diǎn)上,不要求長(zhǎng)寫出畫法.
(1)在圖①中以線段為邊畫一個(gè)直角△;
(2)在圖②中以線段為邊畫一個(gè)軸對(duì)稱△,使其面積為5;
(3)在圖③中以線段為邊畫一個(gè)軸對(duì)稱四邊形,使其面積為6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)圖象,直線與拋物線交于兩點(diǎn),兩點(diǎn)橫坐標(biāo)分別為根據(jù)函數(shù)圖象信息有下列結(jié)論:
①;
②若對(duì)于的任意值都有,則;
③;
④;
⑤當(dāng)為定值時(shí)若變大,則線段變長(zhǎng)
其中,正確的結(jié)論有__________(寫出所有正確結(jié)論的番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),已知點(diǎn).
(1)若,求,滿足的關(guān)系式;
(2)直線與拋物線交于,兩點(diǎn),拋物線的對(duì)稱軸為直線,且.
①求拋物線的解析式(各項(xiàng)系數(shù)用含的式子表示);
②求線段長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC⊥BC,DC⊥EC,AC=BC,DC=EC,圖中AE、BD有怎樣的關(guān)系(數(shù)量關(guān)系和位置關(guān)系)?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com