Loading [MathJax]/jax/output/CommonHTML/jax.js
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
13.在平面直角坐標系中,點P(m2-n21m2nmn2)滿足m+n=4mn時,就稱點P為“曲點”.若兩個“曲點”A,B橫坐標分別為a和2a,O為坐標原點,求△OAB的面積.

分析 根據(jù)點P的橫縱坐標特點找出當點P為“曲點”時,橫縱坐標之積為4,過點A作AC⊥y軸于點C,過點B作BD⊥x軸于點D,延長CA、DB交于點E,利用分割圖形法結(jié)合矩形和三角形的面積即可得出結(jié)論.

解答 解:∵m+n=4mn,
1m2nmn2=1mnmn=4m+nmn=4m2n2
∴(m2-n2)•1m2nmn2=4,
∵點P(m2-n21m2nmn2)滿足m+n=4mn時,就稱點P為“曲點”,
∴“曲點”的橫縱坐標之積為4.
過點A作AC⊥y軸于點C,過點B作BD⊥x軸于點D,延長CA、DB交于點E,如圖所示.
∵兩個“曲點”A,B橫坐標分別為a和2a,
∴A(a,4a),B(2a,2a),
∴E(2a,4a),
∴S△OAB=OD•OC-S△OAC-S△OBD-S△ABE=|2a|•|4a|-12×4-12×4-12|2a-a|•|4a-2a|=3.

點評 本題考查了坐標與圖形性質(zhì)、反比例函數(shù)系數(shù)k的幾何意義以及三角形的面積,解題的關(guān)鍵是找出“曲點”所在圖形的函數(shù)解析式.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)“曲點”的定義找出“曲點”所在圖形的函數(shù)解析式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知線段a,b.
(1)按下列要求作圖:
①用直尺和圓規(guī)作Rt△ABC,使∠C=90°,BC=a,AC=b;
②用直尺和圓規(guī)作AB邊的中垂線,分別交AC,AB于D,E兩點,連結(jié)BD.
(2)若∠A=38°,求∠CBD的度數(shù);
(3)若a=3,b=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.若15x2ym-1與2xn+1y2可以合并成一個項,求m-n+(m-n)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,分別交BC、AD于E、F.求證:AF=EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.如圖,BC⊥AC,AB⊥BD,且BC=4,AC=3,AB=5,BD=12,AD=13,則點D到AB的距離是12,點A到BC的距離是3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于點D,AD=2,AC=5,則D到BC的距離是( �。�
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖:矩形ABCD中,AB=2,BC=5,E、G分別在AD、BC上,且DE=BG=1.
(1)判斷△BEC的形狀,并說明理由?
(2)判斷四邊形EFGH是什么特殊四邊形?并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩名選手參加長跑比賽,他們的行程y(km)隨時間x(h)變化的圖象(全程)如圖所示,有下列說法:
①在起跑后1h內(nèi),甲在乙的前面;
②甲在第1.5h時的行程為12km;
③乙比甲早0.3h到達終點;
④本次長跑比賽的全程為20km.
其中正確說法的個數(shù)是( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖,為了測量一個池塘的寬BC,小明在池塘一側(cè)的平地上選一點A,再分別找出線段AB,AC的中點D,E,若小明測得DE的長是20米,則池塘寬BC=40米.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�