1.如圖,已知ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,分別交BC、AD于E、F.求證:AF=EC.

分析 由四邊形ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,易證得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.

解答 證明:∵四邊形ABCD是平行四邊形,
∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠EAB=$\frac{1}{2}$∠BAD,∠FCD=$\frac{1}{2}$∠BCD,
∴∠EAB=∠FCD,
在△ABE和△CDF中,
$\left\{\begin{array}{l}∠B=∠D\\ AB=CD\\∠EAB=∠FCD\end{array}\right.$,
∴△ABE≌△CDF(ASA),
∴BE=DF.
∵AD=BC,
∴AF=EC.

點(diǎn)評(píng) 此題考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì).注意證得△ABE≌△CDF是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知:如圖,在平行四邊形ABCD中,O為對(duì)角線(xiàn)BD的中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)EF分別交AD,BC于E,F(xiàn)兩點(diǎn),求證:OE=OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.由4x-3y+6=0,可以得到用y表示x的式子為x=$\frac{3y-6}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某公司計(jì)劃2016年在甲、乙兩個(gè)電視臺(tái)播放總長(zhǎng)為300分鐘的廣告,已知甲、乙兩個(gè)電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,該公司的廣告總費(fèi)用為9萬(wàn)元,預(yù)計(jì)甲、乙兩個(gè)電視臺(tái)播放該公司的廣告分別能給該公司帶來(lái)0.3萬(wàn)元/分鐘和0.2萬(wàn)元/分鐘的收益,問(wèn)該公司在甲、乙兩個(gè)電視臺(tái)播放廣告的時(shí)長(zhǎng)為多少分鐘?預(yù)計(jì)甲、乙兩個(gè)電視臺(tái)2016年為該公司所播放的廣告將給該公司帶來(lái)多少萬(wàn)元的收益?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.閱讀下列材料,然后回答問(wèn)題:
在進(jìn)行二次根式運(yùn)算時(shí),我們有時(shí)會(huì)碰上如$\frac{5}{\sqrt{3}}$、$\frac{2}{\sqrt{3}+1}$這樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn):$\frac{5}{\sqrt{3}}$=$\frac{5×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{5}{3}$$\sqrt{3}$;
$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3-1)}}{(\sqrt{3}+1)(\sqrt{3-1)}}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1.
以上這種化簡(jiǎn)過(guò)程叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$還可以用以下方法化簡(jiǎn):
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3+1}}$=$\sqrt{3}$-1.
(1)請(qǐng)任用其中一種方法化簡(jiǎn):
①$\frac{4}{\sqrt{15}-\sqrt{11}}$;
②$\frac{2}{\sqrt{2n-1}+\sqrt{2n+1}}$(n為正整數(shù));
(2)化簡(jiǎn):$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$+…$\frac{2}{\sqrt{101}+\sqrt{99}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,AD是△ABC的角平分線(xiàn),DF⊥AB于點(diǎn)F,DE=DG,△ADG和△AED的面積分別為26和16,則△EDF的面積為5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中,點(diǎn)P(m2-n2,$\frac{1}{{{m^2}n-m{n^2}}}$)滿(mǎn)足m+n=4mn時(shí),就稱(chēng)點(diǎn)P為“曲點(diǎn)”.若兩個(gè)“曲點(diǎn)”A,B橫坐標(biāo)分別為a和2a,O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.觀(guān)察下列數(shù)表:
根據(jù)數(shù)表所反映的規(guī)律,猜想第n行與第n列交叉點(diǎn)上的數(shù)為3n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法不正確的是( 。
A.了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查
B.若甲組數(shù)據(jù)的方差S2=0.31,乙組數(shù)據(jù)的方差S2=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C.“彩票中獎(jiǎng)的概率為1%”表示買(mǎi)100張彩票肯定會(huì)中獎(jiǎng)
D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為$\frac{1}{6}$”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在$\frac{1}{6}$附近

查看答案和解析>>

同步練習(xí)冊(cè)答案