11.如圖,已知AB=AD,∠ABC=∠ADC.試判斷AC與BD的位置關(guān)系,并說明理由.

分析 AC與BD垂直,理由為:由AB=AD,利用等邊對(duì)等角得到一對(duì)角相等,利用等式性質(zhì)得到∠BDC=∠DBC,利用等角對(duì)等邊得到DC=BC,利用SSS得到三角形ABC與三角形ADC全等,利用全等三角形對(duì)應(yīng)角相等得到∠DAC=∠BAC,再利用三線合一即可得證.

解答 解:AC⊥BD,理由為:
∵AB=AD(已知),
∴∠ADB=∠ABD(等邊對(duì)等角),
∵∠ABC=∠ADC(已知),
∴∠ABC-∠ABD=∠ADC-∠ADB(等式性質(zhì)),即∠BDC=∠DBC,
∴DC=BC(等角對(duì)等邊),
在△ABC和△ADC中,
$\left\{\begin{array}{l}{AB=AD}\\{AC=AC}\\{BC=DC}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠DAC=∠BAC(全等三角形的對(duì)應(yīng)角相等),
又∵AB=AD,
∴AC⊥BD(等腰三角形三線合一).

點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.若x=2是關(guān)于x的方程$\frac{2x-m}{4}$-$\frac{1}{2}$=$\frac{x-m}{3}$的解,求$\frac{1}{4}$(-4m-8)-(m-1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知:|3x+2y|+5$\sqrt{2x-3y+13}$=0,求x2-3xy-4y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知一次函數(shù)的圖象經(jīng)過點(diǎn)(0,1),和點(diǎn)(-2,-2)
(1)求這個(gè)函數(shù)的解析式;
(2)求圖象與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC.過點(diǎn)A作AF⊥AB,并截取AF=BD,連接DC,DF,CF.
(1)判斷△CDF的形狀并證明.
(2)若BC=6,AF=2,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知∠MBN=60°,在BM,BN上分別截取BA=BC,P是∠MBN內(nèi)的一點(diǎn),連接PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連接CQ.
(1)觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2)若PA:PB:PC=3:4:5,連接PQ,求證:∠PQC=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.你會(huì)玩“二十四點(diǎn)”游戲嗎?現(xiàn)有“2,3,4,8,”四個(gè)數(shù),每個(gè)數(shù)用且只用一次進(jìn)行加、減、乘、除,使其結(jié)果為24,寫出你的算式(只寫一個(gè)即可):(2+4-3)×8=24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知在△ABC 中,AB>BC,BD平分∠ABC,P點(diǎn)在BD上一點(diǎn),連接PA、PC.求證:AB-BC>PA-PC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(1)過點(diǎn)C畫OB的平行線CD;
(2)過點(diǎn)P畫OA的垂線,垂足為H;
(3)線段PH的長(zhǎng)度是點(diǎn)P到OA的距離,線段PC的長(zhǎng)度是點(diǎn)C到直線OB的距離,線段PC、PH、OC這三條線段大小關(guān)系是PH<PC<OC.(用“<”號(hào)連接)

查看答案和解析>>

同步練習(xí)冊(cè)答案