【題目】如圖(1),RtAOB中,∠A90°,∠AOB60°OB2,∠AOB的平分線OCABC,過O點(diǎn)作與OB垂直的直線ON.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線BCCO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線COON以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).

1)求OCBC的長;

2)當(dāng)t1時(shí),求△CPQ的面積;

3)當(dāng)POCQON上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQOA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿足條件的t值.

【答案】1OC2BC2;(2SPQC;(3t時(shí),△OPM是等腰三角形.

【解析】

1)求出∠B,根據(jù)直角三角形性質(zhì)求出OA,求出AB,在△AOC中,根據(jù)勾股定理得出關(guān)于OC的方程,求出OC即可;

2)如圖11中,作CHPQH.當(dāng)t1時(shí),PBC上,QOC上,CQOQPCPB1,求出PQCH即可解決問題.

3)有三種情況:①OMPM時(shí),求出OP2OQ,代入求出即可;②PMOP時(shí),此時(shí)不存在等腰三角形;③OMOP時(shí),過PPGONG,求出OGQG的值,代入OG+QGt2,即可求出答案.

解:(1)∵∠A90°,∠AOB60°,OB2,

∴∠B30°

OAOB,

由勾股定理得:AB3

OC平分∠AOB,

∴∠AOC=∠BOC30°=∠B

OCBC,

在△AOC中,AO2+AC2CO2,

∴(2+3OC2OC2,

OC2BC,

OC2,BC2

2)如圖11中,作CHPQH.當(dāng)t1時(shí),PBC上,QOC上,CQOQPCPB1,

PQOB,

∴∠CPQ=∠B30°,

CQCPCHQP,

QHPH

CHPC,QHPHCH

QP

SPQCPQCH××

3)如圖(2)所示:

ONOB

∴∠NOB90°,

∵∠B30°,∠A90°,

∴∠AOB60°,

OC平分∠AOB,

∴∠AOC=∠BOC30°,

∴∠NOC90°30°60°,

OMPM時(shí),

MOP=∠MPO30°,

∴∠PQO180°﹣∠QOP﹣∠MPO90°,

OP2OQ,

2t2)=4t

解得:t

PMOP時(shí),

此時(shí)∠PMO=∠MOP30°,

∴∠MPO120°,

∵∠QOP60°,

∴此時(shí)不存在;

OMOP時(shí),

PPGONG,

OP4t,∠QOP60°,

∴∠OPG30°

GO4t),PG4t),

∵∠AOC30°OMOP,

∴∠OPM=∠OMP75°

∴∠PQO180°﹣∠QOP﹣∠QPO45°,

PGQG4t),

OG+QGOQ,

4t+4t)=t2,

解得:t

綜合上述:當(dāng)t時(shí),△OPM是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的O交BC邊于點(diǎn)D,連接AD,過D作AC的垂線,交AC邊于點(diǎn)E,交AB 邊的延長線于點(diǎn)F.

(1)求證:EF是O的切線;

(2)若F=30°,BF=3,求弧AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接11.1—11.4義烏市森博會(huì),某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù).下表提供了部分采購數(shù)據(jù).

(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價(jià)為y1(元/件),求y1x的關(guān)系式;

(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價(jià)不低于1200元.求該商家共有幾種進(jìn)貨方案;

(3)該商家分別以1760/件和1700/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完.在(2)的條件下,求采購A種產(chǎn)品多少件時(shí)總利潤最大,并求最大利潤.

采購數(shù)量(件)

1

2

A產(chǎn)品單價(jià)(元/件)

1480

1460

B產(chǎn)品單價(jià)(元/件)

1290

1280

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某小區(qū)開展了“節(jié)約用水為環(huán)保做貢獻(xiàn)”的活動(dòng),為了解居民用水情況,在小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表

月用水量(噸)

8

9

10

戶數(shù)

2

6

2

則關(guān)于這10戶家庭的月用水量,下列說法錯(cuò)誤的是 ( )

A. 方差是4 B. 極差2 C. 平均數(shù)是9 D. 眾數(shù)是9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠C90°,AD是∠BAC的平分線,DEABEFAC上,BDDF

1)證明:CFEB

2)證明:ABAF+2EB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格內(nèi)有一個(gè)三角形ABC

(1)把△ABC沿著軸向右平移5個(gè)單位得到△ABC,請你畫出△ABC

(2)請你以O點(diǎn)為位似中心在第一象限內(nèi)畫出△ABC的位似圖形△ABC,使得△ABC與△ABC的位似比為1:2;

(3)請你寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,交于點(diǎn)

1)求證:;

2)下列結(jié)論中,正確的有________個(gè).

;②;③平分;④平分

3)請選擇(2)中任一正確結(jié)論進(jìn)行證明.你選的序號是 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,轉(zhuǎn)盤的白色扇形和黑色扇形的圓心角分別為240°120°.讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng)2次,則指針一次落在白色區(qū)域,另一次落在黑色區(qū)域的概率是________.

查看答案和解析>>

同步練習(xí)冊答案