分析 (1)由在△ABC中,AB=AC,∠A=40°,根據(jù)等腰三角形的性質(zhì),可求得∠ABC的度數(shù),又由AB的垂直平分線交AB于點N,交BC的延長線于點M,即可求得答案;
(2)由在△ABC中,AB=AC,∠A=70°,根據(jù)等腰三角形的性質(zhì),可求得∠ABC的度數(shù),又由AB的垂直平分線交AB于點N,交BC的延長線于點M,即可求得答案;
(3)由在△ABC中,AB=AC,根據(jù)等腰三角形的性質(zhì),即可用∠A表示出∠ABC,又由AB的垂直平分線交AB于點N,交BC的延長線于點M,即可求得答案.
解答 解:(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠ACB=70°,
∵AB的垂直平分線交AB于點N,交BC的延長線于點M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=20°;
(2)∵在△ABC中,AB=AC,∠A=70°,
∴∠ABC=∠ACB=55°,
∵AB的垂直平分線交AB于點N,交BC的延長線于點M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=35°;
(3)∠NMB=$\frac{1}{2}$∠A.
理由:∵在△ABC中,AB=AC,
∴∠ABC=∠ACB=$\frac{180°-∠A}{2}$,
∵AB的垂直平分線交AB于點N,交BC的延長線于點M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=$\frac{1}{2}$∠A.
點評 此題考查了線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 全等三角形的對應角相等 | |
B. | 如果兩個數(shù)相等,那么它們的絕對值相等 | |
C. | 對角線互相平分的四邊形是平行四邊形 | |
D. | 如果兩個角都是90°,那么這兩個角相等 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com