【題目】如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)且與軸交點(diǎn)的橫坐標(biāo)分別為,,其中,,下列結(jié)論:①,②,③,④,⑤,其中結(jié)論正確的有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸的位置,判斷b的符號(hào),即可判斷①;根據(jù)x=2所對(duì)應(yīng)的函數(shù)值,即可判斷②;根據(jù)<1,b>0,即可判斷③;根據(jù)頂點(diǎn)的縱坐標(biāo)>2,即可判斷④;根據(jù)拋物線過點(diǎn)(1,2),x=1,x=2所對(duì)應(yīng)的函數(shù)值<0,即可判斷⑤.
由拋物線的開口向下知:a<0,與y軸的交點(diǎn)為在y軸的正半軸上,得:c>0,
∵對(duì)稱軸為:直線x=>0,
∴b>0,
∴,故①錯(cuò)誤;
∵當(dāng)x=2時(shí),y=4a+2b+c<0,
∴②正確;
∵<1,a<0,
∴2a+b<0,
∵b>0,
∴-2b<0,
∴2a-b=2a+b+(-2b)<0,
∴③正確;
∵>2,
∴4acb2<8a,
∴b2+8a>4ac,
∴④正確;
∵二次函數(shù)的圖象經(jīng)過點(diǎn),
∴a+b+c=2,則2a+2b+2c=4(i),
∵當(dāng)x=2時(shí),y=4a+2b+c<0(ii),
當(dāng)x=1時(shí),y=ab+c<0,則2a2b+2c<0(iii),
由(i)(iii)得:2a+2c<2,
由(i)(ii)得:2ac<4,即:4a2c<8,
上面兩個(gè)不等式相加得到:6a<6,
∴a<1,故⑤正確;
∴②③④⑤正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),連接AC并延長(zhǎng)至點(diǎn)D,使CD=AC,點(diǎn)E是OB上一點(diǎn),且,CE的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時(shí),求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某縣政府部門決定,招標(biāo)一工程隊(duì)負(fù)責(zé)完成一座水庫的土方施工任務(wù).該工程隊(duì)有A,B兩種型號(hào)的挖掘機(jī),已知1臺(tái)A型和2臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土80立方米,2臺(tái)A型和3臺(tái)B型挖掘機(jī)同時(shí)施工1小時(shí)共挖土140立方米.每臺(tái)A型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是350元,每臺(tái)B型挖掘機(jī)一個(gè)小時(shí)的施工費(fèi)用是200元.
(1)分別求每臺(tái)A型,B型挖掘機(jī)一小時(shí)各挖土多少立方米?
(2)若A型和B型挖掘機(jī)共10臺(tái)同時(shí)施工4小時(shí),至少完成1360立方米的挖土量,且總費(fèi)用不超過14000元.問施工時(shí)有哪幾種調(diào)配方案?且指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級(jí)全體學(xué)生物理實(shí)驗(yàn)操作的情況,隨機(jī)抽取了30名學(xué)生的物理實(shí)驗(yàn)操作考核成績(jī),并將數(shù)據(jù)進(jìn)行整理,分析如下: (說明:考核成績(jī)均取整數(shù),A級(jí):10分,B級(jí):9分,C級(jí):8分,D級(jí):7分及以下)
收集數(shù)據(jù)
10,8,10,9,5,10,9,9,10,8,9,10,9,9,8,9,8,10,7,9,8,10,9,6,9,10,9,10,8,10
整理數(shù)據(jù)
整理、描述樣本數(shù)據(jù),繪制統(tǒng)計(jì)表如下:
抽取的30名學(xué)生物理實(shí)驗(yàn)操作考核成績(jī)頻數(shù)統(tǒng)計(jì)表
成績(jī)等級(jí) | A | B | C | D |
人數(shù)(名) | 10 | m | n | 3 |
根據(jù)表中的信息,解答下列問題:
(1)m=________,n=________;
(2)若該校九年級(jí)共有800名學(xué)生參加物理實(shí)驗(yàn)操作考核,成績(jī)不低于9分為優(yōu)秀,試估計(jì)該校九年級(jí)參加物理實(shí)驗(yàn)操作考核成績(jī)達(dá)到優(yōu)秀的學(xué)生有多少名?
(3)甲、乙、丙、丁是九年級(jí)1班物理實(shí)驗(yàn)考核成績(jī)?yōu)?/span>10分的四名學(xué)生,學(xué)校計(jì)劃從這四名學(xué)生中隨機(jī)選出兩名學(xué)生代表學(xué)校去參加全市中學(xué)生“物理實(shí)驗(yàn)操作”競(jìng)賽,用列表法或畫樹狀圖法,求甲、乙兩名學(xué)生中至少有一名被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購(gòu)進(jìn)一批新產(chǎn)品進(jìn)行銷售,已知該產(chǎn)品的進(jìn)貨單價(jià)為8元/件,該公司對(duì)這批新產(chǎn)品上市后的銷售情況進(jìn)行了跟蹤調(diào)查.銷售過程中發(fā)現(xiàn),該產(chǎn)品每月的銷售量(萬件)與銷售單價(jià)(元)之間的關(guān)系滿足下表.
銷售單價(jià)(元/件) | … | 10 | 12 | 14 | 15 | … |
每月銷售量(萬件) | … | 40 | 36 | 32 | 30 | … |
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個(gè)模型中確定哪種函數(shù)能比較恰當(dāng)?shù)乇硎?/span>與的變化規(guī)律,并求出與之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),該產(chǎn)品每月獲得的利潤(rùn)為240萬元?
(3)如果該產(chǎn)品每月的進(jìn)貨成本不超過160萬元,那么當(dāng)銷售單價(jià)為多少元時(shí),該產(chǎn)品每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,AD⊥BC于D,點(diǎn)E在AD上,∠BEC=135°,若BC=5,S△ECA=2,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=9,BC=12.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AC的垂線交射線AB于點(diǎn)P.當(dāng)△PQB為等腰三角形時(shí),則AP的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場(chǎng)調(diào)研發(fā)現(xiàn):如果單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;如果單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報(bào)告,yA、yB(萬元)與投資金額x(萬元)的部分對(duì)應(yīng)值(如下表)
(1)求正比例函數(shù)和二次函數(shù)的解析式;
(2)如果公司準(zhǔn)備投資20萬元同時(shí)開發(fā)A、B兩種新產(chǎn)品,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com