分析 (1)連接OC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OC∥AE,可得∠OCB=90°,可證得結(jié)論;
(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.
解答 (1)證明:如圖,連結(jié)OC.
∵CF⊥AB,CE⊥AD,且CE=CF,
∴∠CAE=∠CAB,
∵OC=OA,
∴∠CAB=∠OCA,
∴∠CAE=∠OCA,
∴OC∥AE,
∴∠AEC+∠OCE=90°,
∴∠OCE=90°,即OC⊥CE,
∵OC是⊙O的半徑,點(diǎn)C為半徑外端,
∴CE是⊙O的切線;
(2)解:∵AD=CD,
∴∠DAC=∠DCA=∠CAB,
∴DC∥AB,
∵∠CAE=∠OCA,
∴OC∥AD,
∴四邊形AOCD是平行四邊形,
∴OC=AD=6,AB=12,
∵∠CAE=∠CAB,
∴CD=CB=6,
∴CB=OC=OB,
∴△OCB是等邊三角形,
在Rt△CFB中,CF=$\sqrt{C{B}^{2}-F{B}^{2}}$=3$\sqrt{3}$,
∴S四邊形ABCD=$\frac{1}{2}$(DC+AB)•CF=$\frac{1}{2}$×(6+12)×3$\sqrt{3}$=27$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關(guān)鍵,即有切點(diǎn)時(shí)連接圓心和切點(diǎn),然后證明垂直,沒(méi)有切點(diǎn)時(shí),過(guò)圓心作垂直,證明圓心到直線的距離等于半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③④ | B. | ①②⑤ | C. | ③④⑤ | D. | ①③⑤ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平分弦的直徑垂直于弦 | |
B. | 把(a-2)$\sqrt{\frac{1}{2-a}}$根號(hào)外的因式移到根號(hào)內(nèi)后,其結(jié)果是-$\sqrt{2-a}$ | |
C. | 相等的圓心角所對(duì)的弧相等 | |
D. | 如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com