分析 (1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠DBA=∠A,然后利用直角三角形兩銳角互余列式求出∠CBD=∠DBA=∠A=30°;
(2)根據(jù)直角三角形斜邊的中線等于斜邊的一半可得BE=CE,根據(jù)等邊三角形的判定方法即可得出△BCE是等邊三角形.
解答 解:(1)∵DE垂直平分AB,
∴AD=BD,AE=BE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵∠ABD+∠CBD+∠A=90°
∴∠CBD=∠DBA=∠A=30°;
∴∠ABC=60°;
(2)∵CE是斜邊AB的中線,
∴BE=CE,
∵∠ABC=60°,
∴△BCE是等邊三角形.
點評 本題考查了等邊三角形的判定和性質(zhì)以及線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),角平分線上的點到角的兩邊的距離相等的性質(zhì),等邊對等角的性質(zhì),以及三角形的內(nèi)角和定理,熟記各性質(zhì)是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com