【題目】如圖,先有一張矩形紙片點分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結論:
②四邊形是菱形;
③重合時,;
④的面積的取值范圍是
其中正確的是_____(把正確結論的序號都填上).
【答案】②③
【解析】
先判斷出四邊形是平行四邊形,再根據(jù)翻折的性質(zhì)可得,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出②正確;假設得,進而得,這個不一定成立,判斷①錯誤;點與點重合時,設,表示出,利用勾股定理列出方程求解得的值,進而用勾股定理求得,判斷出③正確;當過點時,求得四邊形的最小面積,進而得的最小值,當與重合時,的值最大,求得最大值便可.
如圖1,
四邊形是平行四邊形,
四邊形是菱形,故②正確;
若,則
,這個不一定成立,
故①錯誤;
點與點重合時,如圖2,
設則
在
即
解得
,
,
,
,
故③正確;
當過點時,如圖3,
此時,最短,四邊形的面積最小,則最小為,
當點與點重合時,最長,四邊形的面積最大,則最大為,
,
故④錯誤.
故答案為:②③.
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y1=kx2+ax+a的圖象與x軸交于點A,B(點A在點B的左側),函數(shù)y2=kx2+bx+b,的圖象與x軸交于點C,D(點C在點D的左側),其中k≠0,a≠b.
(1)求證:函數(shù)y1與y2的圖象交點落在一條定直線上;
(2)若AB=CD,求a,b和k應滿足的關系式;
(3)是否存在函數(shù)y1和y2,使得B,C為線段AD的三等分點?若存在,求的值,若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[提出問題]正多邊形內(nèi)任意一點到各邊距離之和與這個正多邊形的邊及內(nèi)角有什么關系?
[探索發(fā)現(xiàn)]
為了解決這個問題,我們不妨從最簡單的正多邊形-------正三角形入手
如圖①,是正三角形,邊長是是內(nèi)任意一點,到各邊距離分別為,確定的值與的邊及內(nèi)角的關系.
如圖②,五邊形是正五邊形,邊長是是正五邊形內(nèi)任意一點,到五邊形各邊距離分別為, 參照的探索過程,確定的值與正五邊形的邊及內(nèi)角的關系.
類比上述探索過程:
正六邊形(邊長為)內(nèi)任意一點 到各邊距離之和
正八邊形(邊長為)內(nèi)任意一點到各邊距離之和
[問題解決]正邊形(邊長為)內(nèi)任意-一點P到各邊距離之和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進、兩種商品,購買1個商品比購買1個商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.
(1)求購買一個商品和一個商品各需要多少元;
(2)商店準備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線的圖象經(jīng)過點,交軸于點,(點在點左側),頂點為.
(1)求拋物線的解析式:
(2)將沿直線對折,點的對稱點為,試求的坐標;
(3)拋物線的對稱軸上是否存在點,使?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,已知直線y=kx+m與拋物線y=ax2+bx+c分別交于x軸和y軸上同一點,交點分別是點B(6,0)和點C(0,6),且拋物線的對稱軸為直線x=4;
(1)試確定拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PBC是直角三角形?若存在請直接寫出P點坐標,不存在請說明理由;
(3)如圖2,點Q是線段BC上一點,且CQ=,點M是y軸上一個動點,求△AQM的最小周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圓內(nèi)接四邊形ABCD,AD=BC,AB是⊙O的直徑.
(1)求證:AB∥CD;
(2)如圖2,連接OD,作∠CBE=2∠ABD,BE交DC的延長線于點E,若AB=6,AD=2,求CE的長;
(3)如圖3,延長OB使得BH=OB,DF是⊙O的直徑,連接FH,若BD=FH,求證:FH是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設二次函數(shù)y=(ax-1)(x-a),其中a是常數(shù),且a≠0.
(1)當a=2時,試判斷點(-,-5)是否在該函數(shù)圖象上.
(2)若函數(shù)的圖象經(jīng)過點(1,-4),求該函數(shù)的表達式.
(3)當-1≤x≤+1時,y隨x的增大而減小,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com