【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是( )
A.= B.AD,AE將∠BAC三等分
C.△ABE≌△ACD D.S△ADH=S△CEG
【答案】A.
【解析】
試題分析:已知∠B=∠C=36°,可得AB=AC,∠BAC=108°,又因DH垂直平分AB,EG垂直平分AC,根據(jù)中垂線性質(zhì)得DB=DA,EA=EC,所以∠B=∠DAB=∠C=∠CAE=36°,即可判定△BDA∽△BAC,根據(jù)相似三角形的性質(zhì)可得=,再由∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,所以∠ADC=∠DAC,即可得CD=CA=BA,即BD=BC﹣CD=BC﹣AB,所以=,即==,選項(xiàng)A錯(cuò)誤;因?yàn)?/span>∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,所以∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,即可得AD,AE將∠BAC三等分,選項(xiàng)B正確;因?yàn)?/span>∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,可得∠BAE=∠CAD,在△BAE和△CAD中,,所以△BAE≌△CAD,選項(xiàng)C正確;由△BAE≌△CAD可得S△BAE=S△CAD,S△BAD+S△ADE=S△CAE+S△ADE,所以S△BAD=S△CAE,又因DH垂直平分AB,EG垂直平分AC,所以S△ADH=S△ABD,S△CEG=S△CAE,即S△ADH=S△CEG,選項(xiàng)D正確.故答案選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 對(duì)角線互相垂直的四邊形是菱形 B. 對(duì)角線相等的四邊形是矩形
C. 三條邊相等的四邊形是菱形 D. 三個(gè)角是直角的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省岳陽市第20題)我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動(dòng).已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時(shí)從學(xué)校出發(fā),到達(dá)君山島時(shí),服務(wù)人員所花時(shí)間比學(xué)生少用了3.6小時(shí),求學(xué)生步行的平均速度是多少千米/小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點(diǎn)是的中點(diǎn),點(diǎn)在上.
求證: ;
如圖,若的延長(zhǎng)線交于點(diǎn),且,垂足為, ,原來其它條件不變.
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.2a+3b=5ab
B.12x﹣20x=﹣8
C.6ab﹣ab=5ab
D.5+a=5a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P為⊙O內(nèi)一點(diǎn),OP=3cm,⊙O半徑為5cm,則經(jīng)過P點(diǎn)的最短弦長(zhǎng)為;最長(zhǎng)弦長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(3a2b-2a2b)-(ab-4a2)+(2ab-a2b),其中a=-2,b=-3;
(2)3xy2-2+(3x2y-2xy2),其中x=-4,y=.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com