【題目】已知二次函數(shù)y=﹣x2+4x-.
(1)用配方法把該函數(shù)解析式化為y=a(x﹣h)2+k的形式,并指出函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)求函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).
【答案】(1)函數(shù)的對(duì)稱軸是直線 x=4,頂點(diǎn)坐標(biāo)為(4,);(2)(1,0)或(7,0).
【解析】
(1)根據(jù)配方法可以將該函數(shù)解析式化為y=a(x-h)2+k的形式,從而可以得到該函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)令y=0求出相應(yīng)的x的值,即可求得該函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).
解:(1)∵二次函數(shù) y=﹣=,
∴該函數(shù)的對(duì)稱軸是直線 x=4,頂點(diǎn)坐標(biāo)為(4,);
(2)當(dāng) y=0 時(shí),
0=y=-,
解得,x1=7,x2=1,
∴函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo)是(1,0)或(7,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ ABC中,∠ACB=90°,AD平分∠BAC, 作AD的垂直平分線EF交AD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,交AB于點(diǎn)G,交AC于點(diǎn)H.
(1)依題意補(bǔ)全圖形;
(2)求證:∠BAD=∠BFG;
(3)試猜想AB,FB和FD之間的數(shù)量關(guān)系并進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)求證:△ADF∽△DEC;
(3)若AE=6,AD=8,AB=7,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2-x+c經(jīng)過原點(diǎn)O與點(diǎn)A(6,0)兩點(diǎn),過點(diǎn)A作AC⊥x軸,交直線y=2x-2于點(diǎn)C,且直線y=2x-2與x軸交于點(diǎn)D.
(1)求拋物線的解析式,并求出點(diǎn)C和點(diǎn)D的坐標(biāo);
(2)求點(diǎn)A關(guān)于直線y=2x-2的對(duì)稱點(diǎn)A′的坐標(biāo),并判斷點(diǎn)A′是否在拋物線上,并說明理由;
(3)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為l,求l與x的函數(shù)關(guān)系式及l的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公交總站(A點(diǎn))與B、C兩個(gè)站點(diǎn)的位置如圖所示,已知AC=6km,∠B=30°,∠C=15°,求B站點(diǎn)離公交總站的距離即AB的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2.
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(zhǎng)(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com