【題目】如圖,將△ABC繞點C順時針旋轉m°得到△EDC,若點A、D、E在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( )
A. (m﹣n)°B. (90+n-m)°C. (90-n+m)°D. (180﹣2n﹣m)°
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,,,
(1)畫出的邊上的高CH;
(2)將平移到(點和點對應,點和點對應,點和點對應),若點的坐標為,請畫出平移后的;
(3)若,為平面內一點,且滿足與全等,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)拼一拼,畫一畫:請你用4個長為a,寬為b的矩形拼成一個大正方形,并且正中間留下一個洞,這個洞恰好是一個小正方形。
(2)用不同方法計算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?
(3)當拼成的這個大正方形邊長比中間小正方形邊長多3cm時,它的面積就多24cm2,求中間小正方形的邊長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點P是AB的中點,的延長線于點E,連接AE,過點A作交DP于點F,連接BF、下列結論中:≌;;是等邊三角形;;其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中, , , , .
(1)如圖1,連接AC,求證:CA是的平分線;
(2)線段BC上一點E,將 沿AE翻折,點B落到點F處,射線EF與線段CD交于點M.
①如圖2,當點M與點D重合時,求證: ;
②如圖3,當點M不與點D重合時,求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類比學習:
一動點沿著數(shù)軸向右平移個單位,再向左平移個單位,相當于向右平移個單位.用有理數(shù)加法表示為.若坐標平面上的點做如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負,平移個單位),沿軸方向平移的數(shù)量為(向上為正,向下為負,平移個單位),則把有序數(shù)對叫做這一平移的“平移量”;“平移量”與“平移量”的加法運算法則為
解決問題:
(1)計算:;
(2)動點從坐標原點出發(fā),先按照“平移量”平移到,再按照“平移量”平移到:若先把動點按照.“平移量”平移到,再按照“平移量”平移,最后的位置還是嗎?在圖1中畫出四邊形.
(3)如圖2,一艘船從碼頭出發(fā),先航行到湖心島碼頭,再從碼頭航行到碼頭,最后回到出發(fā)點.請用“平移量”加法算式表示它的航行過程.
解:(1)______;
(2)答:______;
(3)加法算式:______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算或化簡:
(1)2﹣1+
(2)2x2y(﹣3xy)÷(xy)2
(3)(﹣2a)(3a2﹣a+3)
(4)(x+3)(x+4)﹣(x﹣1)2
(5)[2a3x2(a﹣2x)﹣a2x2]÷(﹣ax)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(1,a),將線段OA平移至線段BC,B(b,0),a是m+6n的算術平方根,=3,n=,且m<n,正數(shù)b滿足(b+1)2=16.
(1)直接寫出A、B兩點坐標為:A ,B ;
(2)如圖1,連接AB、OC,求四邊形AOCB的面積;
(3)如圖2,若∠AOB=a,點P為y軸正半軸上一動點,試探究∠CPO與∠BCP之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABF中,∠F=90°,點C是線段BF上異于點B和點F的一點,連接AC,過點C作CD⊥AC交AB于點D,過點C作CE⊥AB交AB于點E,則下列說法中,錯誤的是( )
A.△ABC中,AB邊上的高是CEB.△ABC中,BC邊上的高是AF
C.△ACD中,AC邊上的高是CED.△ACD中,CD邊上的高是AC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com