【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=AD,連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結(jié)論中:①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正確的結(jié)論有( 。
A. 1個B. 2個C. 3個D. 4個
【答案】A
【解析】
先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據(jù)三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯誤,根據(jù)三角形的內(nèi)角和和角平分線的定義得到④正確.
解:∵BD是正方形ABCD的對角線,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中,,
∴△ADE≌△CDE(SAS),
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在△ABH和△DCF中,,
∴△ABH≌△DCF(ASA),
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正確;
如圖,連接HE,
∵BH是AE垂直平分線,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯誤,
∵∠AHG=67.5°,
∴∠ABH=22.5°,
∵∠ABD=45°,
∴∠ABH
∴BH平分∠ABE,故④正確;
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一直角三角板MON的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)求∠CON的度數(shù);
(2)如圖2是將圖1中的三角板繞點O以每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周的情況.在旋轉(zhuǎn)的過程中,當?shù)?/span>t秒時,三條射線OA、OC、OM構(gòu)成相等的角,求此時t的值;
(3)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部時,請?zhí)骄俊?/span>AOM與∠CON的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰在復(fù)習過程中,發(fā)現(xiàn)數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例:
如圖1,線段,線段,
線段,線段
結(jié)論:數(shù)軸上任意兩點表示的數(shù)分別為:,(),則這兩點間的距離為:(即:較大的數(shù)減去較小的數(shù)).
嘗試應(yīng)用:
(1)若數(shù)軸上點,點代表的數(shù)分別是-3,-1,則______.
(2)把一條數(shù)軸在數(shù)處對折,表示-9和3兩數(shù)的點恰好互相重合,此時______.
(3)數(shù)軸上的兩個點之間的距離為6,其中一個點表示的數(shù)為3,另一個點表示的數(shù)為,則______.
問題解決:
(4)如圖2,點表示數(shù),點表示-2,點表示且,問點和點分別表示什么數(shù)?為什么?
(5)上述(4)的條件下,圖2所示的數(shù)軸上,是否存在滿足條件的點,使用?
若存在,請直接寫出所表示的數(shù),若不存在,請說明理由?(點不與點,點,點重合)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC、BD相交于點O,點P是線段AD上一動點(不與與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=6cm,AD=8cm,P從點A出發(fā).以1cm/秒的速度向點D勻速運動.設(shè)點P運動時間為t秒,問四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D、E是BC邊上的點,BD:DE:EC=3:2:1,M在AC邊上,CM:MA=1:2,BM交AD,AE于H,G,則BH:HG:GM等于( 。
A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與坐標軸交于A,B兩點,以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點C為直角頂點,連接OC.
(1)直接寫出= ;
(2)請你過點C作CE⊥y軸于E點,試探究OB+OA與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點M為AB的中點,點N為OC的中點,求MN的值;
(4)如圖2,將線段AB繞點B沿順時針方向旋轉(zhuǎn)至BD,且OD⊥AD,延長DO交直線于點P,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以O(shè)B,OA所在直線為x軸、y軸建立平面直角坐標系,F(xiàn)是BC邊上的點,過F點的反比例函數(shù)y=(k>0)的圖象與AC邊交于點E.若將△CEF沿EF翻折后,點C恰好落在OB上的點D處,則點F的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西安某學校為了改善辦學條件,計劃購置一批電子白板和臺式電腦.經(jīng)招投標,購買一臺電子白板比購買2臺臺式電腦多3000元,購買2臺電子白板和3臺臺式電腦共需2.7萬元.
(1)設(shè)購買一臺臺式電腦需元,購買一臺電子白板需 元(用含的代數(shù)式表示)
(2)求購買一臺電子白板和一臺臺式電腦各需多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com