分析 (1)通過全等三角形△BEC≌△DFA的對應(yīng)邊相等推知BE=DF,則結(jié)合已知條件證得結(jié)論;
(2)根據(jù)矩形的性質(zhì)計(jì)算即可.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠DAF=∠BCE.
又∵BE∥DF,
∴∠BEC=∠DFA.
在△BEC與△DFA中,$\left\{\begin{array}{l}{∠BEC=∠DFA}\\{∠BCE=∠DAF}\\{BC=AD}\end{array}\right.$,
∴△BEC≌△DFA(AAS),
∴BE=DF.
又∵BE∥DF,
∴四邊形BEDF為平行四邊形;
(2)連接BD,BD與AC相交于點(diǎn)O,如圖:
∵AB⊥AC,AB=4,BC=2$\sqrt{13}$,
∴AC=6,
∴AO=3,
∴Rt△BAO中,BO=5,
∵四邊形BEDF是矩形,
∴OE=OB=5,
∴點(diǎn)E在OA的延長線上,且AE=2.
點(diǎn)評 本題考查了全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時(shí)要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時(shí)要根據(jù)條件合理、靈活地選擇方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 40° | C. | 50° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com