【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示,將△ABC水平向左平移3個單位,再豎直向下平移2個單位。
(1)讀出△ABC的三個頂點坐標(biāo);
(2)請畫出平移后的△A′B′C′,并直接寫出點A/、B′、C′的坐標(biāo);
(3)求平移以后的圖形的面積 。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光下,小東測得一根長為1 m的竹竿的影長為0.4 m.
(1)求同一時刻2 m的竹竿的影長;
(2)同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,如圖,測得落在第一級臺階上的影子長為0.1 m,第一級臺階的高為0.3 m,落在地面上的影子長為4.3 m,求樹的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】① 如圖(1),直線l上有2個點,則圖中有2條可用圖中字母表示的射線:A1A2、A2A1,有1條線段:A1A2;
② 如圖(2),直線l上有3個點,則圖中有幾條可用圖中字母表示的射線,有幾條線段,并分別用圖中字母表示出來;
③ 如圖(3),直線l上有n個點,則圖中有多少條可用圖中字母表示的射線,有多少條線段,分別用含n的代數(shù)式表示出來;
④ 應(yīng)用(3)中發(fā)現(xiàn)的規(guī)律解決問題:某校七年級共有8個班進(jìn)行足球比賽,準(zhǔn)備進(jìn)行循環(huán)賽(即每兩隊之間賽一場),預(yù)計全部賽完共需多少場比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東方小商品市場一經(jīng)營者將每件進(jìn)價為80元的某種小商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種小商品單價每降低1元,其銷量可增加10件.
(1)該經(jīng)營者經(jīng)營這種商品原來一天可獲利潤____元;
(2)若設(shè)后來該小商品每件降價x元,該經(jīng)營者一天可獲利潤y元.
①若該經(jīng)營者經(jīng)營該商品一天要獲利潤2 090元,求每件商品應(yīng)降價多少元?
②求出y與x之間的函數(shù)關(guān)系式,并求出當(dāng)x取何值時,該經(jīng)營者所獲利潤最大,且最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB∥CD,點 E 為射線 FG 上一點.
(1)如圖 1,若∠EAF=30°,∠EDG=40°,則∠AED= °;
(2)如圖 2,當(dāng)點 E 在 FG 延長線上時,此時 CD 與 AE 交于點 H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;
(3)如圖 3,DI 平分∠EDC,交 AE 于點 K,交 AI 于點 I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車在筆直的公路上同起點、同方向、同終點勻速行駛,先到終點的人原地休息.已知甲先出發(fā),在整個過程中,甲、乙兩車的距離與甲出發(fā)的時間之間的關(guān)系如圖所示.
(1)甲的速度為______,乙的速度為______;
(2)說明點表示的意義,求出點坐標(biāo);
(3)求出線段的函數(shù)關(guān)系式,并寫出的取值范圍;
(4)甲出發(fā)多長時間兩車相距,直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完《平面直角坐標(biāo)系》和《一次函數(shù)》這兩章后,老師布置了這樣一道思考題:已知:如圖,在長方形中,,,點為的中點,和相交于點.求的面積.小明同學(xué)應(yīng)用所學(xué)知識,順利地解決了此題,他的思路是這樣的:以所在的直線為軸,以所在的直線為軸建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫出圖中一些點坐標(biāo).根據(jù)一次函數(shù)的知識求出點的坐標(biāo),從而求得的面積.請你按照小明的思路解決這道思考題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中能使得BC=R的有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為,如果,那么稱這個四位數(shù)為“和平數(shù)”.
例如:1423,,,因為,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(2)將一個“和平數(shù)”的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個“和平數(shù)”為一組“相關(guān)和平數(shù)”.
例如:1423與4132為一組“相關(guān)和平數(shù)”
求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).
(3)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com