【題目】閱讀下列材料
利用完全平方公式,將多項(xiàng)式x2+bx+c變形為(x+m)2+n的形式,然后由(x+m)2≥0就可求出多項(xiàng)式x2+bx+c的最小值.
例題:求x2-12x+37的最小值.
解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,
因?yàn)椴徽?/span>x取何值,(x-6)2總是非負(fù)數(shù),即(x-6)2≥0,
所以(x-6)2+1≥1.
所以當(dāng)x=6時,x2-12x+37有最小值,最小值是1.
根據(jù)上述材料,解答下列問題:
(1)填空:x2-8x+_________=(x-_______)2,
(2)將x2+10x-2變形為(x+m)2+n的形式,并求出x2+10x-2的最小值,
(3)如圖①所示的長方形邊長分別是2a+5、3a+2,面積為S1:如圖②所示的長方形邊長分別是5a、a+5,面積為S2. 試比較S1與S2的大小,并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ADF和△BCE中,∠A=∠B,點(diǎn)D、E、F、C在同﹣直線上,有如下三個關(guān)系式:①AD=BC;②DE=CF;③BE∥AF。
(1)請用其中兩個關(guān)系式作為條件,另一個作為結(jié)論,寫出所有你認(rèn)為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)
(2)選擇(1)中你寫出的一個命題,說明它正確的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn),其中點(diǎn)到點(diǎn)的距離為3,點(diǎn)到點(diǎn)的距離為7,如圖所示:設(shè)點(diǎn)所對應(yīng)的數(shù)的和是.
(1)若以為原點(diǎn),則的值是 .
(2)若原點(diǎn)在圖中數(shù)軸上,且點(diǎn)到原點(diǎn)的距離為4,求的值.
(3)動點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度的速度向終點(diǎn)移動,動點(diǎn)同時從點(diǎn)出發(fā),以每秒1個單位的速度向終點(diǎn)移動,當(dāng)幾秒后,兩點(diǎn)間的距離為2?(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副三角板按不同位置擺放,∠α與∠β互余的是_____,∠α與∠β互補(bǔ)的是______,∠α與∠β相等的是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動開始加熱[此過程中水溫y(℃)與開機(jī)時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機(jī)又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機(jī)時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機(jī)內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)材料1:一般地,n個相同因數(shù)a相乘: 記為 如,此時,3叫做以2為底的8的對數(shù),記為log28(即log28=3).那么,log39=________,=________;
(2)材料2:新規(guī)定一種運(yùn)算法則:自然數(shù)1到n的連乘積用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在這種規(guī)定下,請你解決下列問題:
①算5!=________;
②已知x為整數(shù),求出滿足該等式的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2﹣4x=y
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)因式分解的結(jié)果是否徹底 _________ .(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果 _________ .
(2)請你模仿以上方法嘗試對多項(xiàng)式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等.
··· |
可求得 ,第個格子中的數(shù)為 ;
判斷:前個格子中所填整數(shù)之和是否可能為若能,求出的值,若不可能,請說明理由;
如果,為前格子中的任意兩個數(shù),那么所有的和可以通過計算
得到,若span>,為前格子中的任意兩個數(shù),則所有的的和為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長度的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長度的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t(t>0)秒,過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)當(dāng)t為何值時,△DEF是等邊三角形?說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?(請直接寫出t的值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com