已知b>0時(shí),二次函數(shù)的圖象如下列四個(gè)圖之一所示,根據(jù)圖象分析,a的值等于【  】

   A.-2        B.-1         C.1        D.2


A。

【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),曲線(xiàn)上點(diǎn)的坐標(biāo)與方程的關(guān)系,數(shù)形結(jié)合思想的應(yīng)用。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知正方形ABCD,點(diǎn)E是邊AB的中點(diǎn),點(diǎn)O是線(xiàn)段AE上的一個(gè)動(dòng)點(diǎn)(不與A、E重合),以O(shè)為圓心,OB為半徑的圓與邊AD相交于點(diǎn)M,過(guò)點(diǎn)M作⊙O的切線(xiàn)交DC于點(diǎn)N,連接OM、ON、BM、BN.記△MNO、△AOM、△DMN的面積分別為S1、S2、S3,則下列結(jié)論不一定成立的是(   )

A.S1>S2+S3      B.△AOM∽△DMN      C.∠MBN=45°      D.MN=AM+CN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


定義:對(duì)于實(shí)數(shù)a,符號(hào)[a]表示不大于a的最大整數(shù).例如:[5.7]=5,[5]=5,[-π]=-4.

(1)如果[a]=-2,那么a的取值范圍是 ___________.

(2)如果 ,滿(mǎn)足條件的所有正整數(shù)x有____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知點(diǎn)A在反比例函數(shù)圖象上,點(diǎn)B在反比例函數(shù) (k≠0)的圖象上,CB∥x軸,BD∥AO,若CA=CB,則雙曲線(xiàn)的表達(dá)式為       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至20℃,飲水機(jī)關(guān)機(jī)。飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序。若在水溫為20℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在下午第一節(jié)下課時(shí)(14:30)能喝到健康衛(wèi)生和水溫適中的水(水沸騰后水溫在20℃和50℃之間,含20℃和50℃),則接通電源的時(shí)間最晚是當(dāng)天下午的         之間。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


若拋物線(xiàn)y=ax2+bx+1與x軸只有一個(gè)交點(diǎn),且過(guò)點(diǎn)A(m,n),B(m+4,n),則n=

       (用含a的代數(shù)式表示);若a=1,則點(diǎn)A的坐標(biāo)為       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,拋物線(xiàn)的頂點(diǎn)為D(﹣1,4),與軸交于點(diǎn)C(0,3),與軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

(1)求拋物線(xiàn)的解析式;

(2)連接AC,CD,AD,試證明△ACD為直角三角形;

(3)若點(diǎn)E在拋物線(xiàn)上,EF⊥x軸于點(diǎn)F,以A、E、F為頂點(diǎn)的三角形與△ACD相似,試求出所有滿(mǎn)足條件的點(diǎn)E的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖表示一騎自行車(chē)者和一騎摩托車(chē)者沿相同路線(xiàn)由甲地到乙地行駛過(guò)程的函數(shù)圖象(分別為正比例函數(shù)和一次函數(shù)).兩地間的距離是80千米.請(qǐng)你根據(jù)圖象回答或解決下面的問(wèn)題:

(1)誰(shuí)出發(fā)的較早?早多長(zhǎng)時(shí)間?誰(shuí)到達(dá)乙地較早?早到多長(zhǎng)時(shí)間?

(2)兩人在途中行駛的速度分別是多少?

(3)請(qǐng)你分別求出表示自行車(chē)和摩托車(chē)行駛過(guò)程的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍);

(4)指出在什么時(shí)間段內(nèi)兩車(chē)均行駛在途中(不包括端點(diǎn));在這一時(shí)間段內(nèi),請(qǐng)你分別按下列條件列出關(guān)于時(shí)間x的方程或不等式(不要化簡(jiǎn),也不要求解):①自行車(chē)行駛在摩托車(chē)前面;②自行車(chē)與摩托車(chē)相遇;③自行車(chē)行駛在摩托車(chē)后面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,A,P,B,C是⊙O上的四個(gè)點(diǎn),∠APC=∠BPC=60°,過(guò)點(diǎn)A作⊙O的切線(xiàn)交BP的延長(zhǎng)線(xiàn)于點(diǎn)D.

(1)求證:△ADP∽△BDA;

(2)試探究線(xiàn)段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若AD=2,PD=1,求線(xiàn)段BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案