【題目】為了測量一條兩岸平行的河流寬度,三個數(shù)學研究小組設計了不同的方案,他們在河南岸的點A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:
(1)哪個小組的數(shù)據(jù)無法計算出河寬?
(2)請選擇其中一個方案及其數(shù)據(jù)求出河寬(精確到0.1m).
(參考數(shù)據(jù):)
科目:初中數(shù)學 來源: 題型:
【題目】為了提高學生的綜合素養(yǎng),某校開設了五門手工活動課.按照類別分為:“剪紙”、“沙畫”、“葫蘆雕刻”、“泥塑”、“插花”.為了了解學生對每種活動課的喜愛情況,隨機抽取了部分同學進行調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)本次調查的樣本容量為________;統(tǒng)計圖中的________,________;
(2)通過計算補全條形統(tǒng)計圖;
(3)該校共有2500名學生,請你估計全校喜愛“葫蘆雕刻”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(-3,0)、點B(0,),直線與x軸、y軸分別交于點D、C,M是平面內一動點,且∠AMB=60°,則MCD面積的最小值是 ________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點A為圓心,適當?shù)拈L度為半徑作弧,分別交AB,AC于點E,F,再分別以點E,F為圓心,大于EF的長為半徑作弧相交于點H,作射線AH;
②分別以點A,B為圓心,大于AB的長為半徑作弧相交于點M,N,作直線MN,交射線AH于點O;
③以點O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( 。
A.2B.10C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關于x軸對稱;
(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2,并直接寫出點B旋轉到點B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強居民節(jié)水意識,我市自來水公司采用以戶為單位分段計費辦法收費,即每月用水不超過10噸,每噸收費元;若超過10噸,則10噸水按每噸元收費,超過10噸的部分按每噸元收費,公司為居民繪制的水費(元)與當月用水量(噸)之間的函數(shù)圖象如下,則下列結論錯誤的是( )
A.
B.
C.若小明家3月份用水14噸,則應繳水費23元
D.若小明家7月份繳水費30元,則該用戶當月用水噸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題背景:如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為上一動點(不與B,C重合),求證:PA=PB+PC.請你根據(jù)圖中所給的軸助線,給出作法并完成證明過程.
(2)類比遷移:如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值
(3)拓展延伸:如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內一點,AB= AC,AB⊥AC,垂足為A,則OC的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點G, AC與BG的交點為M.求證:EM:DM=CG:AC;
(3)在(2)小題的條件下,當AB=4,AD=時,求四邊形ABGF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com