精英家教網 > 初中數學 > 題目詳情

【題目】如圖,ABACD的外接圓⊙O的直徑,CDAB于點F,其中AC=ADAD的延長線交過點B的切線BM于點E

1)求證:CDBM;

2)連接OECD于點G,若DE=2,AB=4,求OG的長.

【答案】1)見解析;(2OG=

【解析】

1)根據垂徑定理得ABCD,結合切線的性質,得ABBM,進而即可得到結論;

2)連接BD,證明BAD~EAB,易得AB2=ADAE,從而求出AE=10,根據勾股定理得BE=2,OE=2,由DFBE,根據平行線分線段成比例定理可得AF=OF=,由FGBE,根據平行線分線段成比例定理即可求解.

1)∵ABACD的外接圓⊙O的直徑,BM是⊙O的切線,

ABBM

AC=AD,

,

ABCD,

CDBM;

2)連接BD

AB是⊙O的直徑,

BDAE

ABBE,

∴∠ADB=ABE=90°,

又∵∠BAD=EAB,

BAD~EAB,

AB2=ADAE,

(4)2=AD(AD+2),

AD=8AD=-10(舍去),

AE=10,

BE===2,

OE==2,

DFBE,

=

=,

AF=

OF=AFOA=,

FGBE,

=,

=,

OG=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知點A-2,1),B0,4),C816),O00),Pmn),拋物線y=ax2a≠0)經過A,B,C,其中的一點,

1)求拋物線y=ax2a≠0)的解析式;

2)若直線y=mxm≠0)與直線y=nxn≠0)分別經過點A與點C,判斷點Pm,n)是否在反比例函數y=-的圖象上;

3)若點Pm,n)是反比例函數y=-的圖象上任一點,且直線y=mxm≠0)與直線y=nxn≠0)分別與拋物線y=ax2a≠0)交于點M,點N(不同于原點),求證:M,B,N三點在一條直線上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】大學畢業(yè)生小王響應國家自主創(chuàng)業(yè)的號召,利用銀行小額無息貸款開辦了一家飾品店.該店購進一種今年新上市的飾品進行銷售,飾品的進價為每件40元,售價為每件60元時,每月可賣出300件.市場調查反映:調整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將飾品售價調整為x(元/件),每月飾品銷量為y(件),月利潤為w(元).

(1)直接寫出yx之間的函數關系式;

(2)如何確定售價才能使月利潤最大?求最大月利潤;

(3)為了使每月利潤不少于6000元應如何控制售價?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是⊙O的內接三角形,點D上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.

(1)求證:AC=CE;

(2)求證:BC2﹣AC2=ABAC;

(3)已知⊙O的半徑為3.

①若=,求BC的長;

②當為何值時,ABAC的值最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,C=90°AC=4,cosA=,點D是斜邊AB上的動點且不與A,B重合,連接CD,點B'與點B關于直線CD對稱,連接B'D,當B'D垂直于RtABC的直角邊時,BD的長為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,點AB,CD都在邊長為1的小正方形網格的格點上,過點M(1,-2)的拋物線ymx22mxnm0)可能還經過(

A.AB.BC.CD.D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(02),延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x軸于點A2,作正方形A2B2C2C1按這樣的規(guī)律進行下去,第1個正方形的面積為___;第4個正方形的面積為___

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

(1)試作出△ABCC為旋轉中心,沿順時針方向旋轉90°后的圖形△A1B1C;

(2)以原點O為對稱中心,再畫出與△ABC關于原點O對稱的△A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線經過兩點,與x軸交于另一點B

求拋物線的解析式;

已知點在第一象限的拋物線上,求點D關于直線BC對稱的點的坐標;

如圖2,若拋物線的對稱軸為拋物線頂點與直線BC相交于點F,M為直線BC上的任意一點,過點M交拋物線于點N,以E,F,MN為頂點的四邊形能否為平行四邊形?若能,求點N的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案