【題目】某食品廠生產一種半成品食材,成本為2元/千克,每天的產量P(百千克)與銷售價格x(元/千克)滿足函數關系式p=x+8.從市場反饋的信息發(fā)現,該食材每天的市場需求量q(百千克)與銷售價格x(元/千克)滿足一次函數關系,部分數據如表:
銷售價格x(元/千克) | 2 | 4 | …… | 10 |
市場需求量q(百千克) | 12 | 10 | …… | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元/千克且不高于10元/千克,
(1)直接寫出q與x的函數關系式,并注明自變量x的取值范圍;
(2)當每天的產量小于或等于市場需求量時,這種食材能全部售出;當每天的產量大于市場需求量時,只能售出市場需求的量,而剩余的食材由于保質期短作廢棄處理;
①當每天的食材能全部售出時,求x的取值范圍;
②求廠家每天獲得的利潤y(百元)與銷售價格x的函數關系式;
(3)在(2)的條件下,當x為多少時,y有最大值,并求出最大利潤.
【答案】(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=時取最大值,最大利潤百元.
【解析】
(1)根據表格數據,設q與x的函數關系式為:q=kx+b,待定系數法即可求得;
(2)①根據題意,p≤q,計算即可求得x的取值范圍;
②根據銷售利潤=銷售量(售價-進價),列出廠家每天獲得的利潤(百元)與銷售價格的函數關系;
(3)根據(2)中的條件分情況討論即可.
(1)由表格的數據,設q與x的函數關系式為:q=kx+b
根據表格的數據得,解得,
故q與x的函數關系式為:q=﹣x+14,其中2≤x≤10
(2)①當每天的半成品食材能全部售出時,有p≤q
即x+8≤﹣x+14,解得x≤4
又2≤x≤10,所以此時2≤x≤4
②由①可知,當2≤x≤4時,
y=(x﹣2)p=(x﹣2)(x+8)=x2+7x﹣16
當4<x≤10時,y=(x﹣2)q﹣2(p﹣q)
=(x﹣2)(﹣x+14)﹣2[x+8﹣(﹣x+14)]
=﹣x2+13x﹣16
即有y=
(3)當2≤x≤4時,
y=x2+7x﹣16的對稱軸為x==﹣7
∴當2≤x≤4時,隨x的增大而增大
∴x=4時有最大值,y=20
當4<x≤10時
y=﹣x2+13x﹣16=﹣(x﹣)2+,
∵﹣1<0,>4
∴x=時取最大值
即此時y有最大利潤百元.
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A(1,0)、B(4,0).
(1)求此二次函數的表達式;
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標;
(3)如圖2,點M在拋物線上,且點M的橫坐標是1,點P為拋物線上一動點,若∠PMA=45°,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B.圖②是點F運動時,△FBC的面積y(cm)隨時間x(s)變化的關系圖象,則a的值是__
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我區(qū)某校組織了一次“詩詞大會”,張老師為了選拔本班學生參加,對本班全體學生詩詞的掌握情況進行了調查,并將調查結果分為了三類:A:好,B:中,C:差.請根據圖中信息,解答下列問題:
(1)全班學生共有 人;
(2)扇形統計圖中,B類占的百分比為 %,C類占的百分比為 %;
(3)將上面的條形統計圖補充完整;
(4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個字組成一句詩,其答案為“便引詩情到碧霄”.小明回答該問題時,對第四個字是選“情”還是選“青”,第七個字是選“霄”還是選“宵”,都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小明回答正確的概率.
情 | 到 | 碧 |
霄 | 詩 | 青 |
引 | 宵 | 便 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC,△EFG分別是邊長為2和1的等邊三角形,D是邊BC,EF的中點,直線AG,FC相交于點M,當△EFG繞點D旋轉一周時,點M經過的路徑長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,以O為圓心,OC為半徑的圓分別交AO,BC于點D,E,連接ED并延長交AC于點F.
(1)求證:AB是⊙O的切線;
(2)當時,求的值;
(3)在(2)的條件下,若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在任意四邊形ABCD中,AC,BD是對角線,E、F、G、H分別是線段BD、BC、AC、AD上的點,對于四邊形EFGH的形狀,某班的學生在一次數學活動課中,通過動手實踐,探索出如下結論,其中錯誤的是( )
A. 當E,F,G,H是各條線段的中點時,四邊形EFGH為平行四邊形
B. 當E,F,G,H是各條線段的中點,且AC⊥BD時,四邊形EFGH為矩形
C. 當E,F,G,H是各條線段的中點,且AB=CD時,四邊形EFGH為菱形
D. 當E,F,G,H不是各條線段的中點時,四邊形EFGH可以為平行四邊形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點M和圖形W1,W2給出如下定義:點P為圖形W1上一點,點Q為圖形W2上一點,當點M是線段PQ的中點時,稱點M是圖形W1,W2的“中立點”.如果點P(x1,y1),Q(x2,y2),那么“中立點”M的坐標為(,).
已知,點A(-3,0),B(0,4),C(4,0).
(1)連接BC,在點D(,0),E(0,1),F(0,)中,可以成為點A和線段BC的“中立點”的是______;
(2)已知點G(3,0),⊙G的半徑為2,如果直線y=-x+1存在點K可以成為點A和⊙G的“中立點”,求點K的坐標;
(3)以點C為圓心,半徑為2作圓,點N為直線y=2x+4上的一點,如果存在點N,使得y軸上的一點可以成為點N與⊙C的“中立點”,直接寫出點N的橫坐標的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com