分析 延長AB到D,使BD=BP,連接PD.則∠D=∠5.由已知條件不難算出:∠1=∠2=30°,∠3=∠4=40°=∠C.
于是QB=QC.又∠D+∠5=∠3+∠4=80°,故∠D=40°.于是△APD≌△APC(AAS),所以AD=AC.即AB+BD=AQ+QC,等量代換即可得證.
解答 證明:延長AB到D,使BD=BP,連接PD,
則∠D=∠5.
∵AP,BQ分別是∠BAC,∠ABC的平分線,∠BAC=60°,∠ACB=40°,
∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,
∴QB=QC,
又∠D+∠5=∠3+∠4=80°,
∴∠D=40°.
在△APD與△APC中,
$\left\{\begin{array}{l}{∠D=∠C}\\{∠2=∠1}\\{AP=AP}\end{array}\right.$
∴△APD≌△APC(AAS),
∴AD=AC.
即AB+BD=AQ+QC,
∴AB+BP=BQ+AQ.
點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理的應(yīng)用,正確作好輔助線,構(gòu)造全等三角形是解此題的關(guān)鍵,主要考查學(xué)生的推理能力,難度偏大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 600名學(xué)生的體重是總體 | B. | 被抽取的100名學(xué)生的體重是樣本 | ||
C. | 樣本的容量是100 | D. | 被抽取的100名學(xué)生是樣本 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{27}$ | B. | $\sqrt{14}$ | C. | $\sqrt{\frac{1}{a}}$ | D. | $\sqrt{3{a}^{2}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com