分析 (1)分別令y=0,x=0,即可求出A、B的坐標(biāo);
(2)因?yàn)镺A=8,OB=6,利用勾股定理可得AB=10,進(jìn)而可求出點(diǎn)Q由O到A的時(shí)間是8秒,點(diǎn)P的速度是2,從而可求出,
當(dāng)P在線段OB上運(yùn)動(dòng)(或0≤t≤3)時(shí),OQ=t,OP=2t,S=t2,當(dāng)P在線段BA上運(yùn)動(dòng)(或3<t≤8)時(shí),OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于點(diǎn)D,由相似三角形的性質(zhì),得PD=$\frac{48-6t}{5}$,利用S=$\frac{1}{2}$OQ×PD,即可求出答案;
(3)令S=$\frac{48}{5}$,求出t的值,進(jìn)而求出OD、PD,即可求出P的坐標(biāo),利用平行四邊形的對邊平行且相等,結(jié)合簡單的計(jì)算即可寫出M的坐標(biāo);
(4)當(dāng)點(diǎn)P在OB上時(shí),由已知條件得到$\frac{OP}{OQ}≠\frac{OA}{OB}$,得到△OAB與△OPQ不相似;當(dāng)點(diǎn)P在AB上時(shí),①當(dāng)∠PQO=90°時(shí),即PQ⊥OA,②當(dāng)∠OPQ=90°時(shí),即PO⊥PQ,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解答 解:(1)y=0,x=0,求得A(8,0),B(0,6),
(2)∵OA=8,OB=6,
∴AB=10.
∵點(diǎn)Q由O到A的時(shí)間是$\frac{8}{1}$=8(秒),
∴點(diǎn)P的速度是$\frac{6+10}{8}$=2(單位長度/秒).
當(dāng)P在線段OB上運(yùn)動(dòng)(或0<t≤3)時(shí),
OQ=t,OP=2t,S=t2.
當(dāng)P在線段BA上運(yùn)動(dòng)(或3<t<8)時(shí),
OQ=t,AP=6+10-2t=16-2t,
如圖,過點(diǎn)P作PD⊥OA于點(diǎn)D,
由$\frac{PD}{BO}$=$\frac{AP}{AB}$,得PD=$\frac{48-6t}{5}$.
∴S=$\frac{1}{2}$OQ•PD=-$\frac{3}{5}$t2+$\frac{24}{5}$t.
(3)當(dāng)S=$\frac{48}{5}$時(shí),∵$\frac{48}{5}$$>\frac{1}{2}$×3×6,∴點(diǎn)P在AB上,
當(dāng)S=$\frac{48}{5}$時(shí),-$\frac{3}{5}$t2+$\frac{24}{5}$t=$\frac{48}{5}$,
∴t=4,
∴PD=$\frac{48-6×4}{5}$=$\frac{24}{5}$,AP=16-2×4=8
AD=$\sqrt{{8}^{2}-(\frac{24}{5})^{2}}$=$\frac{32}{5}$,
∴OD=8-$\frac{32}{5}$=$\frac{8}{5}$
∴P($\frac{8}{5}$,$\frac{24}{5}$),
M1($\frac{28}{5}$,$\frac{24}{5}$),M2(-$\frac{12}{5}$,$\frac{24}{5}$),M3($\frac{12}{5}$,-$\frac{24}{5}$);
(4)當(dāng)點(diǎn)P在OB上時(shí),
∵$\frac{OP}{OQ}$=2,$\frac{OA}{OB}=\frac{4}{3}$,
∴$\frac{OP}{OQ}≠\frac{OA}{OB}$,
∴△OAB與△OPQ不相似;
當(dāng)點(diǎn)P在AB上時(shí),
①當(dāng)∠PQO=90°時(shí),即PQ⊥OA,
∴△APQ∽△ABO,
∴$\frac{AP}{AB}=\frac{AQ}{AO}$,即$\frac{16-2t}{10}=\frac{8-t}{8}$,
解得:t=8(不合題意),
②當(dāng)∠OPQ=90°時(shí),即PO⊥PQ,
∴△OPQ∽△AOB,
∴∠POQ=∠BAO,
∴OP=AP=16-2t,
∴$\frac{OP}{OA}=\frac{OQ}{AB}$,即$\frac{16-2t}{8}=\frac{t}{10}$,
∴t=$\frac{40}{7}$,
∴△ABO與△OPQ在運(yùn)動(dòng)過程中相似t=$\frac{40}{7}$.
點(diǎn)評 本題主要考查了勾股定理,相似三角形的判定和性質(zhì),平行線分線段成比例以及一次函數(shù)的綜合應(yīng)用,要注意的是(2)中,要根據(jù)P點(diǎn)的不同位置進(jìn)行分類求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -5,5 | B. | -5,3 | C. | 52,3 | D. | -52,3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com