【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處.
(1)如圖1,若折痕,且,求矩形ABCD的周長;
(2)如圖2,在AD邊上截取DG=CF,連接GE,BD,相交于點H,求證:BD⊥GE.
【答案】(1)36;(2)答案見解析.
【解析】
(1)設EC=3k,則FC=4k,EF=5k,然后判斷出∠BAF=∠EFC,利用三角函數(shù)的知識表示出BF、AF,結(jié)合AE的長.在Rt△AFE中利用勾股定理可求出矩形ABCD的邊長,繼而可得出周長.
(2)根據(jù)題意可得GD=FC,DE=EF,然后表示出cos∠EFC,及cos∠BAF,根據(jù)∠BAF=∠EFC,可得出一對相等的比例關(guān)系,繼而可判斷出△DBA∽△EGD,得出∠DBA=∠EGD,然后利用等量代換可確定結(jié)論.
(1)設EC=3k,由tan∠EFC=,則FC=4k,EF=5k.
∵四邊形ABCD是矩形,∴AB=DC=8k.
∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.
∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∴tan∠BAF=,∴BF=6k,AF=10k.在Rt△AFE中,AF2+EF2=AE2,AE=5,∴100k2+25k2=(5)2,解得:k=1,∴AB=DC=8,BC=AD=AF=10,所以矩形ABCD的周長為36.
(2)∵GD=FC,DE=EF,∴cos∠EFC==.
∵cos∠BAF==,∠BAF=∠EFC,∴=,∴△DBA∽△EGD,∴∠DBA=∠EGD.
∵∠DBA+∠ADB=90°,∴∠DGH+∠GDH=90°,∴∠GHD=90°,∴BD⊥GE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位的正方形,已知△ABC的三個頂點在格點上.
(1)畫出△A1B1C1,使它與△ABC關(guān)于直線a對稱;
(2)求出△A1B1C1的面積;
(3)在直線a上畫出點P,使PA+PC最小,最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.
(1)把圓片沿數(shù)軸向左滾動1周,點A到達數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是______;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當圓片結(jié)束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商城銷售A,B兩種自行車.A型自行車售價為2 100元/輛,B型自行車售價為1 750元/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80 000元購進A型自行車的數(shù)量與用64 000元購進B型自行車的數(shù)量相等.
(1)求每輛A,B兩種自行車的進價分別是多少?
(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13 000元,求獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線:與軸相交于B,與軸相交于點A.直線:經(jīng)過原點,并且與直線相交于C點.
(1)求ΔOBC的面積;
(2)如圖2,在軸上有一動點E,連接CE.問CE+BE是否有最小值,如果有,求出相應的點E的坐標及CE+BE的最小值;如果沒有,請說明理由;
(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點正好落在軸上.將ΔDCE繞點D順時針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點C,E的對稱點分別為C′,E′.在旋轉(zhuǎn)過程中,設C′E′所在的直線與直線相交于點M,與軸正半軸相交于點N.當ΔOMN為等腰三角形時,求線段ON的長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在10×10正方形網(wǎng)格中,每個小正方形的邊長均為1個單位.將△ABC向下平移4個單位,得到△A′B′C′,再把△A′B′C′繞點C'順時針旋轉(zhuǎn)90°,得到△A″B″C′,
(1)請你畫出△A′B′C′和△A″B″C′(不要求寫畫法).
(2)求出線段A′C′在旋轉(zhuǎn)過程中所掃過的面積.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊上的中點,過D點作DE⊥DF,交AB于點E,交BC于點F,若AE=8,FC=6.
(1)求EF的長.
(2)求四邊形BEDF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com