分析 設(shè)點(diǎn)D是AF2的中點(diǎn),由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0⇒若$\overrightarrow{M{F}_{1}}$=-2($\overrightarrow{M{F}_{2}}$+$\overrightarrow{MA}$)=-4$\overrightarrow{MD}$,
即三點(diǎn)F1、M、D三點(diǎn)共線,且點(diǎn)M是靠近D的5等分點(diǎn),△AF1F2與△AMF2的面積比為5:1;
如圖$\overrightarrow{M{F}_{1}}+2\overrightarrow{M{F}_{2}}=\overrightarrow{MF}$,有$\frac{M{F}_{2}}{{F}_{1}F}=\frac{MH}{HF}=1:2$,由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,得2$\overrightarrow{AM}=\overrightarrow{MF}$,⇒AM:MH=3:2,⇒△AF1F2與△AMF1F2的面積比為5:2
解答 解:設(shè)點(diǎn)D是AF2的中點(diǎn),
∵$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0⇒若$\overrightarrow{M{F}_{1}}$=-2($\overrightarrow{M{F}_{2}}$+$\overrightarrow{MA}$)=-4$\overrightarrow{MD}$,
∴三點(diǎn)F1、M、D三點(diǎn)共線,且點(diǎn)M是靠近D的5等分點(diǎn),
△AF1F2與△AMF2的面積比為5:1;
如圖$\overrightarrow{M{F}_{1}}+2\overrightarrow{M{F}_{2}}=\overrightarrow{MF}$,有$\frac{M{F}_{2}}{{F}_{1}F}=\frac{MH}{HF}=1:2$,
由$\overrightarrow{M{F}_{1}}$+2$\overrightarrow{M{F}_{2}}$+2$\overrightarrow{MA}$=0,得2$\overrightarrow{AM}=\overrightarrow{MF}$,⇒AM:MH=3:2,
∴△AF1F2與△AMF1F2的面積比為5:2
又∵△AMF2與△AMF1F2的面積比為AF2:F1F2=1:2,
AF2:F1F2:AF1=1:2:2,∴2a=3c,
橢圓的離心率為$\frac{2}{3}$.
故答案為:$\frac{2}{3}$
點(diǎn)評(píng) 本題考查了橢圓的離心率、向量的線性運(yùn)算,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3] | B. | [3,+∞) | C. | (0,3) | D. | (0,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{3}$個(gè)單位而得 | |
B. | 可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{3}$個(gè)單位而得 | |
C. | 可由函數(shù)g(x)=cos2x的圖象向左平移$\frac{π}{6}$個(gè)單位而得 | |
D. | 可由函數(shù)g(x)=cos2x的圖象向右平移$\frac{π}{6}$個(gè)單位而得 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{π}{2},-\frac{π}{4})$ | B. | $(-\frac{π}{4},\frac{π}{2})$ | C. | $(\frac{π}{2},π)$ | D. | $(\frac{3π}{2},2π)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 相離 | C. | 相切 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com