【題目】如圖,四邊形ABCD是☉O的內(nèi)接四邊形,AB的延長線與DC的延長線交于點E,且CB=CE.
(Ⅰ)證明:∠D=∠E;
(Ⅱ)設(shè)AD不是☉O的直徑,AD的中點為M,且MB=MC,證明:△ADE為等邊三角形.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)由四點共圓性質(zhì)可得∠D=∠CBE.再結(jié)合條件∠CBE=∠E,得證(2)由等腰三角形性質(zhì)得OM⊥AD,即得AD∥BC, 因此∠A=∠CBE=∠E.而∠D=∠E,所以△ADE為等邊三角形.
試題解析:解: (1)由題設(shè)知A,B,C,D四點共圓,所以∠D=∠CBE.
由已知得∠CBE=∠E,故∠D=∠E.
(2)設(shè)BC的中點為N,連結(jié)MN,則由MB=MC知MN⊥BC,故O在直線MN上.又AD不是☉O的直徑,M為AD的中點,故OM⊥AD,
即MN⊥AD. 所以AD∥BC,故∠A=∠CBE.
又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE為等邊三角形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為實數(shù),p:點M(1,1)在圓(x+a)2+(y﹣a)2=4的內(nèi)部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓+=1有相同的焦點,直線y=x為一條漸近線.求雙曲線C的方程.
(2)焦點在直線3x﹣4y﹣12=0 的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某中學(xué)欲制定一項新的制度,學(xué)生會為此進行了問卷調(diào)查,所有參與問卷調(diào)查的人中,持有“支持”、“不支持”和“既不支持也不反對”的人數(shù)如下表所示:
支持 | 既不支持也不反對 | 不支持 | |
高一學(xué)生 | 800 | 450 | 200 |
高二學(xué)生 | 100 | 150 | 300 |
(Ⅰ)在所有參與問卷調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持”的人中抽取了45人,求的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有1人是高一學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是正項等比數(shù)列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互異的正整數(shù)m,n,使得Sm=Sn , 則Sm+n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象為, 關(guān)于點對稱的圖象為, 對應(yīng)的函數(shù)為.
(Ⅰ)求的解析式;
(Ⅱ)若直線與只有一個交點,求的值和交點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,下表是初賽成績(得分均為整數(shù),滿分為100分)的頻率分布表.
分組(分數(shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
0.16 | ||
17 | ||
| 19 | 0.38 |
| ||
合計 | 50 | 1 |
(Ⅰ)求頻率分布表中, , , 的值;
(Ⅱ)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答3道判斷題,答對3道題獲得一等獎,答對2道題獲得二等獎,答對1道題獲得三等獎,否則不得獎.若某同學(xué)進入決賽,且其每次答題回答正確與否均是等可能的,試列出他回答問題的所有可能情況,并求出他至少獲得二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數(shù)字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和.
(1)求事件“不小于6”的概率;
(2)“為奇數(shù)”的概率和“為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com