3.直線2x-y+a=0與3x+y-3=0交于第一象限,當(dāng)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的區(qū)域上運(yùn)動(dòng)時(shí),m=4x+3y的最大值為8,則實(shí)數(shù)a=2.

分析 由題意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交點(diǎn)($\frac{3-a}{5}$,$\frac{6+3a}{5}$),利用當(dāng)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的區(qū)域上運(yùn)動(dòng)時(shí),m=4x+3y的最大值為8,求出a即可.

解答 解:由題意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交點(diǎn)($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
當(dāng)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的區(qū)域上運(yùn)動(dòng)時(shí),m=4x+3y的最大值為8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此時(shí),直線2x-y+2=0與3x+y-3=0的交點(diǎn)坐標(biāo)為($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
故答案為2.

點(diǎn)評(píng) 本題考查線性規(guī)劃知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)復(fù)數(shù)z=2-i(i為虛數(shù)單位),則復(fù)數(shù)z2=3-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$+x
(Ⅰ)在f(x)=lnx+$\frac{a}{x}$+x(0<x≤2)圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)不等式f(x)≥a+1,對(duì)x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一塊石材表示的幾何體的三視圖如圖所示,則它的體積等于(  )
A.96B.192C.288D.576

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)計(jì)算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{2}}}{y^{-\frac{1}{6}}}})}}$;
(2)已知log53=a,log52=b,用a,b表示log2512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則x2+y2的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等差數(shù)列{an}的前n項(xiàng)和Sn=-2n2-n
(1)求通項(xiàng)an的表達(dá)式;
(2)說(shuō)明{an}是一個(gè)怎樣的等差數(shù)列;
(3)求a1+a3+a5+…+a25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件;
(1)焦點(diǎn)在y軸正半軸上;
(2)焦點(diǎn)在x軸正半軸上;
(3)拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6;
(4)拋物線的準(zhǔn)線方程為$x=-\frac{5}{2}$
其中適合拋物線y2=10x的條件是(要求填寫合適條件的序號(hào))(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,a>0,b>0$的離心率e=2,左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,則$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案