分析 由$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),可得Sn=nan+1-n(n+1),利用遞推關(guān)系可得:an+1-an=2.利用等差數(shù)列的通項(xiàng)公式及其求和公式可得an,Sn.代入anSn≤2200化簡整理即可得出.
解答 解:∵$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),∴Sn=nan+1-n(n+1),
∴n≥2時(shí),Sn-1=(n-1)an-(n-1)n,相減可得:an+1-an=2.
∴數(shù)列{an}是等差數(shù)列,公差為2,首項(xiàng)為2.
∴an=2+2(n-1)=2n,Sn=$\frac{n(2+2n)}{2}$=n(n+1).
∴anSn≤2200化為:2n•n(n+1)≤2200,即n2(n+1)≤1100=102×11,
∴n≤10.
∴滿足不等式anSn≤2200的最大正整數(shù)n的值為10.
故答案為:10.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、遞推關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P | B. | Q | C. | P∪Q | D. | P∩Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3,5} | B. | {1,2,3} | C. | {0,1} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{5}$i | B. | $\frac{2}{5}i$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com