6.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),則滿足不等式anSn≤2200的最大正整數(shù)n的值為10.

分析 由$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),可得Sn=nan+1-n(n+1),利用遞推關(guān)系可得:an+1-an=2.利用等差數(shù)列的通項(xiàng)公式及其求和公式可得an,Sn.代入anSn≤2200化簡整理即可得出.

解答 解:∵$\frac{S_n}{n}$=an+1-(n+1)(n∈N*),∴Sn=nan+1-n(n+1),
∴n≥2時(shí),Sn-1=(n-1)an-(n-1)n,相減可得:an+1-an=2.
∴數(shù)列{an}是等差數(shù)列,公差為2,首項(xiàng)為2.
∴an=2+2(n-1)=2n,Sn=$\frac{n(2+2n)}{2}$=n(n+1).
∴anSn≤2200化為:2n•n(n+1)≤2200,即n2(n+1)≤1100=102×11,
∴n≤10.
∴滿足不等式anSn≤2200的最大正整數(shù)n的值為10.
故答案為:10.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、遞推關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sin(2x-$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow a$與$\overrightarrow b$滿足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$.則向量$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{π}{4}$,$\overrightarrow a$在$\overrightarrow b$上的投影=1,|$\overrightarrow a+\overrightarrow b$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在正方體ABCD-A1B1C1D1中,已知M,N分別是AB1,BB1的中點(diǎn),則直線AM與CN所成角的余弦值為(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{10}}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合P={直角三角形},Q={等腰三角形},若△ABC的三邊a,b,c所對的角分別是A,B,C,則滿足acosA=bcosB的三角形的集合是(  )
A.PB.QC.P∪QD.P∩Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在斜三棱柱ABC-A1B1C1中,底面ABC是正三角形,E是AB中點(diǎn),A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點(diǎn)B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={0,1,2},集合B={x|x=2n+1,n∈A},則A∩B=( 。
A.{0,1,2,3,5}B.{1,2,3}C.{0,1}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{3+4i}{1+2i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)的虛部為( 。
A.-$\frac{2}{5}$iB.$\frac{2}{5}i$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在矩形ABCD中,E,F(xiàn)分別為AD上的兩點(diǎn),已知∠CAD=θ,∠CED=2θ,∠CFD=4θ,AE=600,EF=200$\sqrt{3}$,則CD=300.

查看答案和解析>>

同步練習(xí)冊答案