8.下列函數(shù)中圖象相同的是(  )
A.y=x與y=$\sqrt{{x}^{2}}$B.y=x-1與y=$\frac{{x}^{2}-1}{x+1}$
C.y=x2與y=2x2D.y=x2-4x+6與y=(x-2)2+2

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷兩個函數(shù)是相等的函數(shù),對應(yīng)圖象相同.

解答 解:對于A,y=x與y=$\sqrt{{x}^{2}}$=|x|的對應(yīng)關(guān)系不相同,不是相同函數(shù),函數(shù)圖象不同;
對于B,y=x-1的定義域是R,與y=$\frac{{x}^{2}-1}{x+1}$=x-1的定義域是{x|x≠-1},
定義域不同,不是相同函數(shù),函數(shù)圖象不同;
對于C,y=x2,與y=2x2的對應(yīng)關(guān)系不同,不是相同函數(shù),函數(shù)的圖象不同;
對于D,y=x2-4x+6的定義域是R,y=(x-2)2+2=x2-4x+6的定義域是R,
定義域相同,對應(yīng)關(guān)系也相同,是相同函數(shù),函數(shù)圖象相同.
故選:D.

點評 本題考查了判斷兩個函數(shù)是否為相等函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知全集U={-2,-1,0,1,2,3},M={-1,0,1,3},N={-2,0,2,3},則(∁UM)∩N為{-2,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x-1|.求不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若點A和點B分別是函數(shù)f(x)和g(x)的圖象上任意一點,定義兩點間的距離|AB|的最小值為兩函數(shù)的“親密度”,則函數(shù)f(x)=$\left\{{\begin{array}{l}{{e^x},-2≤x<-1}\\{e•f({x-1}),x≥-1}\end{array}}$與g(x)=lnx的“親密度”為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A=$\left\{{x\left|{y=\sqrt{{{log}_{\frac{1}{2}}}(2-x)}}\right.}\right\}$,B={x|x-a<0},若A∩B=∅,則實數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC的三個頂點為A(4,0),B(8,10),C(0,6).求過點A且平行于BC的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=3x+λ•3-x(λ∈R).
(1)當(dāng)λ=1時,試判斷函數(shù)f(x)=3x+λ•3-x的奇偶性,并證明你的結(jié)論;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合A={1,2},B={x∈Z|1<x<4},則A∪B=(  )
A.{0,1,3,4}B.{1,2,3}C.{0,4}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A={x|x-a>0},B={x|x≤0},若A∩B=∅,則a的取值范圍是a≥0.

查看答案和解析>>

同步練習(xí)冊答案