分析 由正弦定理把已知的等式化邊為角,結(jié)合兩角和的正弦化簡(jiǎn),求出sinA,進(jìn)一步求得∠A,即可得解.
解答 解:由acosB+bcosA=csinA,結(jié)合正弦定理可得:sinAcosB+sinBcosA=sinCsinA,
∴sin(B+A)=sinCsinA,可得:sinC=sinCsinA,
在△ABC中,∵sinC≠0,
∴sinA=1,
又0<A<π,
∴∠A=$\frac{π}{2}$,則△ABC的形狀為直角三角形.
故答案為:直角三角形.
點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,考查了兩角和與差的三角函數(shù),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一次函數(shù) | B. | 二次函數(shù) | C. | 指數(shù)函數(shù) | D. | 對(duì)數(shù)函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | (¬p)∧q | D. | (¬p)∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ?p∧q | C. | p∧?q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
綜合得分k的范圍 | 節(jié)排器等級(jí) | 節(jié)排器利潤(rùn)率 |
k≥85 | 一級(jí)品 | a |
75≤k<85 | 二級(jí)品 | 5a2 |
70≤k<75 | 三級(jí)品 | a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | $1+\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | -$\frac{\sqrt{2}}{4}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com