20.方程$\left\{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}\right.$,表示的曲線上的一個點的坐標是( 。
A.(2,-7)B.(1,0)C.($\frac{1}{2}$,$\frac{1}{2}$)D.($\frac{1}{3}$,$\frac{2}{3}$)

分析 先利用二倍角公式將參數(shù)方程化成普通方程,再將選項中點逐一代入驗證即可.

解答 解:cos2θ=1-2sin2θ=1-2x2=y,
∴方程$\left\{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}\right.$,(θ為參數(shù)且θ∈R)表示x2=$\frac{1}{2}$(1-y),
將點代入驗證得C適合方程,
故選:C.

點評 本題主要考查了拋物線的參數(shù)方程化成普通方程,解題的關(guān)鍵是消參,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等差數(shù)列{an}的公差為d,前n項和為Sn,滿足S4=-8,$\frac{1}{2}<d<1$,則當Sn取得最小值時,n的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cos(α+$\frac{π}{12}$)=-$\frac{1}{3}$,則sin(α-$\frac{5π}{12}$)的值為( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.-$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)是二次函數(shù),不等式f(x)<0的解集為(0,5),且f(x)在[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在自然數(shù)m,使得方程$f(x)+\frac{37}{x}=0$在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實根?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x+4
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)y=f(x)在[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a,b都是實數(shù),且a>0,b>0,則“a>b”是“a+lna>b+lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x+$\sqrt{3}$y-2=0的傾斜角為( 。
A.30°B.120°C.150°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$.
①求|z|;
②若$\frac{{|{\overline z}|+mi}}{1-i}=\sqrt{2}$i,m∈R,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z滿足(1+2i3)z=1+2i,則z的虛部是$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案