8.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(-x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為( 。
A.(-2,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)

分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,利用導(dǎo)數(shù)和已知即可得出其單調(diào)性.再利用函數(shù)的奇偶性和已知可得g(0)=1,即可得出.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),∴g′(x)<0.
∴g(x)在R上單調(diào)遞減.
∵f(-x)=f(2+x),
∴f(x+1)=f(-x+1),
∴函數(shù)關(guān)于x=1對(duì)稱,
∴f(0)=f(2)=1,
原不等式等價(jià)為g(x)<1,
∵g(0)=$\frac{f(0)}{{e}^{0}}$=1.
∴g(x)<1?g(x)<g(0),
∵g(x)在R上單調(diào)遞減,
∴x>0.
∴不等式f(x)<ex的解集為(0,+∞),
故選:D.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用函數(shù)的單調(diào)性解不等式、函數(shù)的奇偶性及對(duì)稱性,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c分別是△ABC的內(nèi)角A、B、C對(duì)的邊,$b=\sqrt{3}$.
(1)若$C=\frac{5π}{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求c;
(2)若$B=\frac{π}{3}$,求2a-c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(3,4),復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,那么z•$\overline{z}$等于(  )
A.5B.-7C.12D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.射洪縣教育局從去年參加了計(jì)算機(jī)職稱考試,并且年齡在[25,55]歲的教師中隨機(jī)抽取n人的成績(jī)進(jìn)行了調(diào)查,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)30q
第六組[50,55)150.3
(1)補(bǔ)全頻率分布直方圖,并求a、p、q的值;
(2)若用以上數(shù)據(jù)來估計(jì)今年參考老師的過關(guān)情況,并將每組的頻率視作對(duì)應(yīng)年齡階段老師的過關(guān)概率,考試是否過關(guān)互不影響.現(xiàn)有三名教師參加該次考試,年齡分別為41歲、47歲、53歲.記ξ為過關(guān)的人數(shù),請(qǐng)利用相關(guān)數(shù)據(jù)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{m}$=($\frac{1}{2}$sinx,$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=(cosx,${cos}^{2}x-\frac{1}{2}$)(x∈R),且函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的對(duì)稱軸方程;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知直線與拋物線y2=2px(p>0)交于A,B兩點(diǎn),且OA⊥OB,OD⊥AB交AB于點(diǎn)D(不為原點(diǎn)).
(Ⅰ)求點(diǎn)D的軌跡方程;
(Ⅱ)若點(diǎn)D坐標(biāo)為(2,1),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊且asinB=$\sqrt{3}$bcosA
(1)求A
(2)若a=3,b=2c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某人上午7時(shí)乘船出發(fā),以勻速v海里/小時(shí)(4≤v≤20)從A港前往相距50海里的B地,然后乘汽車以勻速ω千米/小時(shí)(30≤ω≤100)自B港前往相距300千米的C市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)C市.設(shè)乘船和汽車的所要的時(shí)間分別為x、y小時(shí),如果所需要的經(jīng)費(fèi)P=100+3(5-x)+(8-y)(單位:元)
(1)試用含有v、ω的代數(shù)式表示P;
(2)要使得所需經(jīng)費(fèi)P最少,求x和y的值,并求出此時(shí)的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知球的直徑SC=2$\sqrt{5}$,A,B是該球球面上的兩點(diǎn),若AB=2,∠ASC=∠BSC=45°,則棱錐S-ABC的表面積為(  )
A.22B.16C.12D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案