13.如圖,已知直線與拋物線y2=2px(p>0)交于A,B兩點,且OA⊥OB,OD⊥AB交AB于點D(不為原點).
(Ⅰ)求點D的軌跡方程;
(Ⅱ)若點D坐標為(2,1),求p的值.

分析 (Ⅰ)設點A的坐標(x1,y1),點B的坐標(x2,y2),點D的坐標為(x0,y0)(x0≠0),由OA⊥OB,得x1x2+y1y2=0,由此入手能求出點D的方程.
(Ⅱ)點D(2,1)代入方程x2+y2-2px=0,能求出結(jié)果.

解答 (本小題滿分12分)
解:(Ⅰ)設點A的坐標(x1,y1),點B的坐標(x2,y2),點D的坐標為(x0,y0)(x0≠0),
由OA⊥OB得x1x2+y1y2=0.…(2分)
由已知,得直線AB的方程為${y_0}y=-{x_0}x+x_0^2+y_0^2$.…(3分)
又有$y_1^2=2p{x_1},y_2^2=2p{x_2},y_1^2y_2^2=(2p{x_1})(2p{x_2}),{x_1}{x_2}=\frac{y_1^2y_2^2}{{4{p^2}}}$,
由x1x2+y1y2=0得${y_1}{y_2}+4{p^2}=0$.…(4分)
把${y_0}y=-{x_0}x+x_0^2+y_0^2$代入y2=2px并消去x得${x_0}{y^2}+2p{y_0}y-2p(x_0^2+y_0^2)=0$,
得${y_1}{y_2}=\frac{-2p(x_0^2+y_0^2)}{x_0}$,…(6分)
代入${y_1}{y_2}+4{p^2}=0$
得$x_0^2+y_0^2-2p{x_0}=0({x_0}≠0)$,…(8分)
故所求點D的軌跡方程為x2+y2-2px=0(x≠0).…(10分)
(Ⅱ)把x=2,y=1代入方程x2+y2-2px=0中,得$p=\frac{5}{4}$.…(12分)

點評 本題考查點的軌跡方程的求法,考查實數(shù)值的求法,是中檔題,解題時要認真審題,注意直線、拋物線的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.設P為△ABC所在平面上一點,且滿足$3\overrightarrow{PA}+4\overrightarrow{PC}=m\overrightarrow{AB}$(m>0).若△ABP的面積為8,則△ABC的面積為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知關(guān)于x,y的二元一次方程組的增廣矩陣為$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,則3x-y=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量且夾角為$\frac{π}{3}$,設$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x),且f(-x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為( 。
A.(-2,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設x>0,y>0,滿足$\frac{4}{y}$+$\frac{1}{x}$=4,則x+y的最小值為( 。
A.4B.$\frac{9}{4}$C.2D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知公差不為零的等差數(shù)列{an}中,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2${\;}^{{a}_{n}}$+n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若x∈[1,+∞)時,關(guān)于x的不等式$\frac{xlnx}{x+1}$≤λ(x-1)恒成立,則實數(shù)λ的取值范圍為[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設函數(shù)f(x)=x2-2ex-$\frac{lnx}{x}$+a(其中e為自然對數(shù)的底數(shù),若函數(shù)f(x)至少存在一個零點,則實數(shù)a的取值范圍是( 。
A.$({0,{e^2}-\frac{1}{e}}]$B.$({0,{e^2}+\frac{1}{e}}]$C.$[{{e^2}-\frac{1}{e},+∞})$D.$({-∞,{e^2}+\frac{1}{e}}]$

查看答案和解析>>

同步練習冊答案