2.設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b為常數(shù).已知曲線y=f(x)與y=g(x)在其圖象上點(diǎn)(2,0)處有相同的切線l.求a、b的值,并寫出切線l的方程.

分析 分別求得f(x),g(x)的導(dǎo)數(shù)沒看到切線的斜率,以及a,b的方程組,解方程可得a,b,進(jìn)而得到切線的方程.

解答 解:f'(x)=3x2+4ax+b,g'(x)=2x-3.
由于曲線y=f(x)與y=g(x)在其圖象上點(diǎn)(2,0)處有相同的切線,
故有f(2)=g(2)=0,f'(2)=g'(2)=1,
由此可得8+8a+2b+a=0,12+8a+b=1,
解得a=-2,b=5,
切線l的方程為y=x-2,即為x-y-2=0.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計(jì)劃采用隨機(jī)數(shù)表法從該品牌800粒種子中抽取60粒進(jìn)行檢測,現(xiàn)將這800粒種子編號如下001,002,…,800,若從隨機(jī)數(shù)表第8行第7列的數(shù)7開始向右讀,則所抽取的第4粒種子的編號是( ).(下表是隨機(jī)數(shù)表第7行至第9行)

A.105 B.507 C.071 D.717

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖, ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是( ).

A.BD∥平面CB1D1

B.AC1⊥BD

C.AC1⊥平面CB1D1

D.異面直線AD與CB1角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求經(jīng)過直錢2x-3y+1=0和3x-4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.{\;}_{\;}^{\;}$(t為參數(shù)),曲線C2的參數(shù)方程為 $\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).
(1)若C1與C2相交于A、B兩點(diǎn),求|AB|;
(2)若把曲線C2上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,縱坐標(biāo)保持不變,得到曲線C3,設(shè)點(diǎn)P是曲線C3上的一個動點(diǎn),求它到曲線C1的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將一張邊長為6cm的紙片按如圖l所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐(底面是正方形,頂點(diǎn)在底面的射影為正方形的中心)模型,如圖2放置.若正四棱錐的正視圖是正三角形(如圖3),則正四棱錐的體積是$\frac{8\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+(m-1)x+1
(1)當(dāng)m>0且f(x)的最小值為-3時,求m的值,并寫出此時f(x)的單調(diào)區(qū)間
(2)若函數(shù)f(x)在區(qū)間[0,2]上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列各數(shù):101011(2),1210(3),110(8),68(12)中最小的數(shù)為1210(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)設(shè)z∈C,z+|$\overline{z}$|=2+i,求z
(2)已知曲線y=$\frac{1}{3}$x3+$\frac{4}{3}$.求曲線過點(diǎn)P(2,4)的切線方程.

查看答案和解析>>

同步練習(xí)冊答案