16.
商品名稱ABCDE
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.參考公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。

分析 (1)由已知條件作出散點圖,觀察散點圖得兩個變量有線性相關(guān).
(2)設(shè)回歸直線的方程是:$\widehat{y}$=bx+a,分別求出$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,由此能求出利潤額y對銷售額x的回歸直線方程.
(3)由利潤額y對銷售額x的回歸直線方程,能求出當(dāng)銷售額為4千萬元時的利潤額.

解答 解:(1)由已知條件作出散點圖,如下:

觀察散點圖得兩個變量有線性相關(guān).
(2)設(shè)回歸直線的方程是:$\widehat{y}$=bx+a,
∵$\overline{x}$=$\frac{1}{5}$(3+5+6+7+9)=6,$\overline{y}$=$\frac{1}{5}$(2+3+3+4+5)=3.4,
∴$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
=$\frac{-3×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.6}{9+1+1+9}$
=$\frac{10}{20}=\frac{1}{2}$,
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=3.4-$\frac{1}{2}×6$=0.4.
∴利潤額y對銷售額x的回歸直線方程為:y=0.5x+0.4.
(2)當(dāng)銷售額為4千萬元時,利潤額為:
$\widehat{y}$=0.5×4+0.4=2.4(百萬元).

點評 本題考查散點圖的作法,考查線性回歸方程的求法及應(yīng)用,是中檔題,解題時要認(rèn)真審題,注意回歸方程性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={-1,1,3,5,7},集合A={1,|3-a|,5},若∁UA={-1,7},則實數(shù)a的值是( 。
A.0B.6C.-4或10D.0或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題:“對任意 x>0,ex>x+1”的否定是(  )
A.存在 x≤0,ex≤x+1B.存在 x>0,ex≤x+1
C.存在 x≤0,ex>x+1D.對任意 x>0,ex≤x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E,F(xiàn)分別是PC,AB的中點.
(1)求證:DF⊥PB;
(2)求三棱錐P-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若圓C:(x+1)2+(y-2)2=8關(guān)于直線2ax+by+6=0對稱,則由點M(a,b)向圓所作的切線長的最小值是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.U={x|x≥-1},A={x|1<x≤3},B={x|2<x≤4},求A∪B,A∩B,A∩(∁UB),B∩(∁UA).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.a(chǎn),b是任意實數(shù),a>b,且a≠0,則下列結(jié)論正確的是(  )
A.3-a<3-bB.$\frac{a}$<1C.lg(a-b)>lg$\frac{1}{a-b}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若a=logπ3,b=log3π,c=lnπ,則( 。
A.c>a>bB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
①函數(shù)y=sin2x偶函數(shù); 
②函數(shù)y=sin2x的最小正周期為π;
③函數(shù)y=ln(x+1)沒有零點;  
④函數(shù)y=ln(x+1)在區(qū)間(-1,0)上是增函數(shù).
其中正確的命題是②④(只填序號)

查看答案和解析>>

同步練習(xí)冊答案