12.化簡(2a-3b-${\;}^{\frac{2}{3}}$)•(-3a-1b)÷(4a-4b-${\;}^{\frac{5}{3}}$)得-$\frac{3}{2}$b2

分析 利用指數(shù)冪的運(yùn)算法則,即可得出結(jié)論.

解答 解:(2a-3b-${\;}^{\frac{2}{3}}$)•(-3a-1b)÷(4a-4b-${\;}^{\frac{5}{3}}$)=-$\frac{3}{2}{a}^{-3-1+4}^{-\frac{2}{3}+1+\frac{5}{3}}$=-$\frac{3}{2}$b2,
故答案為:-$\frac{3}{2}$b2

點(diǎn)評(píng) 本題考查指數(shù)冪的運(yùn)算法則,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在四棱錐F-ABCD中,底面ABCD是平行四邊形,AB=4,AD=8,∠BAD=60°,F(xiàn)A⊥平面ABCD且FA=12,點(diǎn)E在FA上,F(xiàn)C∥平面BED,
(1)求$\frac{FE}{AE}$的值;
(2)求A到平面BED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,點(diǎn)O為圓柱形木塊底面的圓心,AD是底面圓的一條弦,優(yōu)弧$\widehat{AED}$的長為底面圓的周長的$\frac{3}{4}$.過AD和母線AB的平面將木塊剖開,得到截面ABCD,已知四邊形ABCD的周長為40.
(Ⅰ)設(shè)AD=x,求⊙O的半徑(用x表示);
(Ⅱ)求這個(gè)圓柱形木塊剩下部分(如圖一)側(cè)面積的最大值.(剩下部分幾何體的側(cè)面積=圓柱側(cè)面余下部分的面積+四邊形ABCD的面積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式x2(x-4)≥0的解集是{x|x≥4或x=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列對(duì)應(yīng)關(guān)系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A=R,B=R,f:x→x的倒數(shù)
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:x→x2其中是A到B的映射的是(  )
A.①③B.②④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)命題p:$\left\{\begin{array}{l}{2x+y-2≥0}\\{x+3y-6≤0}\\{x-k≤0}\end{array}\right.$(x,y,k∈R,且k>0);命題q:(x-1)2+y2≤5(x,y∈R).若p是q的充分不必要條件為真命題,則k的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$,其中a為實(shí)數(shù).
(Ⅰ)求a的值,使函數(shù)f(x)為奇函數(shù);
(Ⅱ)在(Ⅰ)的基礎(chǔ)上,求不等式f(x)>$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為( 。
①若p∨q為真命題,則p∧q為真命題.
②“x>5”是“x2-4x-5>0”的充分不必要條件.
③命題P:?x∈R,使得x2+x-1<0,則¬p:?x∈R,使得x2+x-1≥0.
④命題“若x2-3x+2=0,則x=1”的否命題為假命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某人欲從某車站乘車出差,已知該站發(fā)往各站的客車平均每小時(shí)一班,則此人等車時(shí)間不多于10分鐘的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{10}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案