【題目】有如下四個命題:
p1:x0∈(0,+∞), < ;
p2:x0∈ , = ;
p3:x∈R,2x>x2;
p4:x∈(1,+∞),
其中真命題是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體A﹣BCD中,AB=CD=10,AC=BD=2 ,AD=BC=2 ,則四面體A﹣BCD外接球的表面積為( 。
A.50π
B.100π
C.200π
D.300π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在x1處取得極大值,在x2處取得極小值,滿足x1∈(﹣1,0),x2∈(0,1),則 的取值范圍是( 。
A.
B.(0,1)
C.
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能 與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格 .人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有 的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為 。若每次抽取的結(jié)果是相互獨立的,求 的分布列,期望 和方差 .
附: ,其中 .
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐 中, 平面 , ,底面 是梯形, , , .
(1)求證:平面 平面 ;
(2)設(shè) 為棱 上一點, ,試確定 的值使得二面角 為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=log3(x+1).若關(guān)于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集為A,函數(shù)f(x)在[-8,8]上的值域為B,若“x∈A”是“x∈B”的充分不必要條件,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若 、 是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線 ,則在平面 內(nèi)一定不存在與直線 平行的直線.
②若直線 ,則在平面 內(nèi)一定存在無數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內(nèi)不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內(nèi)一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)是R上的單調(diào)函數(shù),若函數(shù)y=f(2x2+1)+f(λ-x)只有一個零點,則實數(shù)λ的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為 ,離心率為 ,經(jīng)過點 且傾斜角為 的直線 交橢圓于 兩點.
(1)若 的周長為16,求直線 的方程;
(2)若 ,求橢圓 的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com