4.如圖,在多面體ABCDEF中,四邊形ABCD為邊長為4的正方形,M是BC的中點,EF∥平面ABCD,且EF=2,AE=DE=BF=CF=$2\sqrt{2}$.
(1)求證:ME⊥平面ADE;
(2)求多面體ABCDEF的體積.

分析 (1)取AD中點N,連結(jié)NM,NE,推導(dǎo)出AD⊥ME,過E點,作EO⊥NM于O,推導(dǎo)出NE⊥ME,由此能證明ME⊥面ADE.
(2)過E,F(xiàn)點分別作垂直底面的平面,把多面體ABCDEF分成兩個全等的四棱錐和一個三棱柱,由此能求出多面體ABCDEF的體積.

解答 證明:(1)取AD中點N,連結(jié)NM,NE,
則AD⊥NM,AD⊥NE,
∴AD⊥平面NME,∴AD⊥ME,
過E點,作EO⊥NM于O,
根據(jù)題意,得NO=1,OM=3,NE=2,
∴OE=$\sqrt{3}$,EM=2$\sqrt{3}$,
∴△ENM是直角三角形,∴NE⊥ME,
∴ME⊥面ADE.
解:(2)過E,F(xiàn)點分別作垂直底面的平面,
把多面體ABCDEF分成兩個全等的四棱錐和一個三棱柱,
則多面體ABCDEF的體積V=2×$\frac{1}{3}×1×4×\sqrt{3}$+$\frac{1}{2}×4×\sqrt{3}×2$=$\frac{20\sqrt{3}}{3}$.

點評 本題考查線面垂直的證明,考查柱、錐、臺體的體積的求法,考查推理論證能力、運算求解能力,考查空間想象能力,考查轉(zhuǎn)化化歸思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x+1}{x-1}(a>0,且a>0,且a≠1)$
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)若對于x∈[2,4],恒有$f(x)>{log_a}\frac{m}{(x-1)(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,直線PP′過坐標原點O,與橢圓C分別交于點P,P′兩點,且|PF|=1,|P′F|=3,橢圓C的離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l過橢圓C的右焦點F,且與橢圓C交于A,B兩點,若∠AOB是鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓E的離心率為e,兩焦點分別為F1,F(xiàn)2,拋物線C以F1為頂點,F(xiàn)2為焦點,點P為這兩條曲線的一個交點,若e|$\overrightarrow{P{F_2}}$|=|$\overrightarrow{P{F_1}}$|,則e的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個單位,所得的圖象對應(yīng)的解析式為( 。
A.y=sin2xB.y=cosxC.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,如圖,在四棱錐S-ABCD中,底面梯形ABCD中,BC∥AD,平面SAB⊥平面ABCD,△SAB是等邊三角形,已知$AC=2AB=4,BC=2AD=2DC=2\sqrt{5}$.
(I)求證:平面SAB⊥平面SAC;
(II)求二面角B-SC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin(x+$\frac{5π}{2}$)的圖象關(guān)于( 。
A.原點對稱B.y軸對稱C.直線x=$\frac{5π}{2}$對稱D.直線x=-$\frac{5π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在四邊形ABCD中,對角線AC,BD垂直相交于點O,且OA=OB=OD=4,OC=3.
將△BCD沿BD折到△BED的位置,使得二面角E-BD-A的大小為90°(如圖).已知Q為EO的中點,點P在線段AB上,且$AP=\sqrt{2}$.
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以(-1,1)為圓心且與直線x-y=0相切的圓的方程是(  )
A.(x+1)2+(y-1)2=2B.(x+1)2+(y-1)2=4C.(x-1)2+(y+1)2=1D.(x-1)2+(y+1)2=4

查看答案和解析>>

同步練習(xí)冊答案