15.已知F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),直線PP′過坐標(biāo)原點(diǎn)O,與橢圓C分別交于點(diǎn)P,P′兩點(diǎn),且|PF|=1,|P′F|=3,橢圓C的離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l過橢圓C的右焦點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),若∠AOB是鈍角,求直線l的斜率k的取值范圍.

分析 (Ⅰ)由題意可知丨PF1丨+|PF|=3+1=4=2a,a=2c,即可求得c的值,b2=a2-c2=3,即可求得橢圓C的方程;
(Ⅱ)當(dāng)k=0時(shí),求得A和B的坐標(biāo),由$\overrightarrow{OA}$•$\overrightarrow{OB}$=1-$\frac{3}{4}$=$\frac{1}{4}$>0,則∠AOB是銳角,當(dāng)k≠0,代入橢圓方程,由韋達(dá)定理及向量的坐標(biāo)運(yùn)算,x1x2+y1y2<0,即可求得k的取值范圍.

解答 解:(Ⅰ)設(shè)橢圓的左焦點(diǎn)為F1,由題意可在:丨PF1丨=|P′F|=3,則丨PF1丨+|PF|=3+1=4=2a,則a=2,
橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,則c=1,
b2=a2-c2=3
橢圓C的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)由(Ⅱ)可知:橢圓的右焦點(diǎn)(1,0),直線AB的斜率k=0時(shí),
A(1,$\frac{\sqrt{3}}{2}$),A(1,-$\frac{\sqrt{3}}{2}$),
$\overrightarrow{OA}$•$\overrightarrow{OB}$=1-$\frac{3}{4}$=$\frac{1}{4}$>0,
∴∠AOB是銳角,
當(dāng)直線AB的斜率存在時(shí),直線l的方程y=k(x-1),k≠0,A(x1,y1),B(x2,y2).
則$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得(3+4k2)x2-8k2x+4k2-12=0,
∵直線l過焦點(diǎn)F,∴△>0恒成立,
且x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∠AOB是鈍角,則$\overrightarrow{OA}$•$\overrightarrow{OB}$<0,
∴x1x2+y1y2<0,x1x2+k2(x1-1)(x2-1)<0,化為:(1+k2)x1x2-k2(x1+x2)+k2<0,
則(1+k2)×$\frac{4{k}^{2}-12}{3+4{k}^{2}}$-k2×$\frac{8{k}^{2}}{3+4{k}^{2}}$+k2<0,解得:k2≥-$\frac{12}{5}$,
綜上可知:k∈R,且k≠0,
直線l的斜率k的取值范圍(-∞,0)∪(0,+∞).

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,韋達(dá)定理,向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2,已知點(diǎn)A(-2,0),B(2,0),則(|PA|-|PB|)2( 。
A.為定值8B.為定值4C.為定值2D.不是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1-\sqrt{2}i}{i}$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)$\frac{3+4i}{i}$的虛部為(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點(diǎn)且斜率為k的直線,與雙曲線的右支只有一個(gè)公共點(diǎn),則實(shí)數(shù)k的范圍為( 。
A.(-∞,-2]∪[2,+∞)B.[0,2]C.$[-\sqrt{2},\sqrt{2}]$D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)f(x)是定義在R上的奇函數(shù),且f(2-x)=f(x),當(dāng)-1≤x<0時(shí),f(x)=log2(-3x+1),則f(2017)的值為( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;
患三高疾病不患三高疾病合計(jì)
24630
121830
合計(jì)362460
(2)為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量K2,并說(shuō)明你有多大把握認(rèn)為患三高疾病與性別有關(guān).
下列的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在多面體ABCDEF中,四邊形ABCD為邊長(zhǎng)為4的正方形,M是BC的中點(diǎn),EF∥平面ABCD,且EF=2,AE=DE=BF=CF=$2\sqrt{2}$.
(1)求證:ME⊥平面ADE;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=log2x,在區(qū)間(0,5)上隨機(jī)取一個(gè)數(shù)x,則f(x)<2的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案