14.以(-1,1)為圓心且與直線x-y=0相切的圓的方程是( 。
A.(x+1)2+(y-1)2=2B.(x+1)2+(y-1)2=4C.(x-1)2+(y+1)2=1D.(x-1)2+(y+1)2=4

分析 以(-1,1)為圓心且與直線x-y=0相切的圓的半徑為圓心到直線的距離,由此能求出圓的方程.

解答 解:以(-1,1)為圓心且與直線x-y=0相切的圓的半徑為圓心到直線的距離,
即r=d=$\frac{|-1-1|}{\sqrt{2}}$=$\sqrt{2}$,
∴以(-1,1)為圓心且與直線x-y=0相切的圓的方程是:
(x+1)2+(y-1)2=2.
故選:A.

點(diǎn)評 本題考查圓的方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在多面體ABCDEF中,四邊形ABCD為邊長為4的正方形,M是BC的中點(diǎn),EF∥平面ABCD,且EF=2,AE=DE=BF=CF=$2\sqrt{2}$.
(1)求證:ME⊥平面ADE;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=log2x,在區(qū)間(0,5)上隨機(jī)取一個(gè)數(shù)x,則f(x)<2的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓x2+y2+2x-2y-6=0截直線x+y+a=0所得弦的長度為4,則實(shí)數(shù)a的值是±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若$\frac{tanA}{tanB}$+$\frac{tanA}{tanC}$=3,則sinA的最大值為$\frac{\sqrt{21}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$,若f(a)>f(2-a),則a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z滿足z(1+i)=1-i,則|z|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右頂點(diǎn)分別是A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),離心率為$\frac{{\sqrt{2}}}{2}$.設(shè)點(diǎn)P(a,t)(t≠0),連接PA交橢圓于點(diǎn)C,坐標(biāo)原點(diǎn)是O.
(Ⅰ)證明:OP⊥BC;
(Ⅱ)若三角形ABC的面積不大于四邊形OBPC的面積,求|t|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若P是雙曲線x2-y2=λ(λ>0)左支上的一點(diǎn),F(xiàn)1、F2是左、右兩個(gè)焦點(diǎn),若|PF2|=6,PF1與雙曲線的實(shí)軸垂直,則λ的值是( 。
A.3B.4C.1.5D.1

查看答案和解析>>

同步練習(xí)冊答案