已知函數(shù)
(1).求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2).若x1≠x2滿足f(x1)=f(x2),求證:x1+x2<0
(1)的增區(qū)間是,減區(qū)間是,在處取得極小值,無極大值;(2)證明過程詳見解析.
解析試題分析:本題主要考查函數(shù)的單調(diào)性、函數(shù)的極值、不等式證明等基礎知識,意在考查考生的運算求解能力、推理論證能能力以及分類討論思想和等價轉化思想的應用.第一問,對求導,利用單調(diào)遞增,單調(diào)遞減,判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性判斷函數(shù)的極值;第二問,構造新函數(shù),利用的正負,判斷函數(shù)的單調(diào)性,求出最小值,得到,即,利用的單調(diào)性,比較2個自變量的大小.
試題解析:(1)∵,
∴當時,;當時,.
則的增區(qū)間是,減區(qū)間是.
所以在處取得極小值,無極大值. 6分
(2)∵且,由(1)可知異號.
不妨設,,則.
令=, 8分
則,
所以在上是增函數(shù). 10分
又,∴,
又∵在上是增函數(shù),
∴,即. 12分
考點:函數(shù)的單調(diào)性、函數(shù)的極值、不等式證明.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),滿足,且,為自然對數(shù)的底數(shù).
(1)已知,求在處的切線方程;
(2)若存在,使得成立,求的取值范圍;
(3)設函數(shù),為坐標原點,若對于在時的圖象上的任一點,在曲線上總存在一點,使得,且的中點在軸上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
(Ⅰ)若曲線在點處的切線與直線平行,求的值;
(Ⅱ)記,,且.求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
(2)當時,函數(shù)在區(qū)間上存在極值,求的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)≈).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其圖象與軸交于,兩點,且x1<x2.
(1)求的取值范圍;
(2)證明:(為函數(shù)的導函數(shù));
(3)設點C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當時,若方程在上有兩個實數(shù)解,求實數(shù)的取值范圍;
(3)證明:當時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com