9.已知函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(Ⅰ)求函數(shù)f(x)的遞增區(qū)間;
(Ⅱ)△ABC的角A,B,C所對邊分別是a,b,c,角A的平分線交BC于D,f(A)=$\frac{3}{2}$,AD=$\sqrt{2}$BD=2,求cosC.

分析 (Ⅰ)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的遞增區(qū)間.
(Ⅱ)在△ABC中,利用正弦定理求得sinB的值,可得B的值,再利用兩角和的余弦公式,求得cosC=-cos(A+B)的值.

解答 解:(Ⅰ)$f(x)=\sqrt{3}sinxcosx+{sin^2}x$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x+\frac{1}{2}=sin(2x-\frac{π}{6})+\frac{1}{2}$,
令 $2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$,解得$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3},k∈z$,
所以遞增區(qū)間是$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈z)$.
(Ⅱ)$f(A)=\frac{3}{2}⇒sin(2A-\frac{π}{6})=1$,得到$2A-\frac{π}{6}=2kπ+\frac{π}{2}⇒A=kπ+\frac{π}{3},k∈z$,
由$0<A<\frac{π}{2}$,得到$A=\frac{π}{3}$,所以角$∠BAD=\frac{π}{6}$,
由正弦定理得$\frac{BD}{sin∠BAD}$=$\frac{AD}{sinB}$,∴sinB=$\frac{\sqrt{2}}{2}$,∴$B=\frac{π}{4}$,
∴$cosC=-cos(A+B)=sin\frac{π}{3}sin\frac{π}{4}-cos\frac{π}{3}cos\frac{π}{4}=\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

點評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,正弦定理、兩角和的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒賺1.7元;如果當(dāng)天未能按量完成任務(wù),則按實際完成的雕刻量領(lǐng)取當(dāng)天工資.
(I)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n210230250270300
頻數(shù)12331
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┣笤摰窨處熯@10天的平均收入;
(ⅱ)求該雕刻師當(dāng)天收入不低于300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足$\frac{z}{1+i}=|{2-i}|$,則z的共軛復(fù)數(shù)對應(yīng)的點位于復(fù)平面內(nèi)的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx-bx3,a,b為實數(shù),b≠0,e為自然對數(shù)的底數(shù),e=2.71828.
(1)當(dāng)a<0,b=-1時,設(shè)函數(shù)f(x)的最小值為g(a),求g(a)的最大值;
(2)若關(guān)于x的方程f(x)=0在區(qū)間(1,e]上有兩個不同的實數(shù)解,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=lnx-x3與g(x)=x3-ax的圖象上存在關(guān)于x軸的對稱點,則實數(shù)a的取值范圍為( 。
A.(-∞,e)B.(-∞,e]C.$(-∞,\frac{1}{e})$D.$(-∞,\frac{1}{e}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,E是PC的中點,底面ABCD為矩形,AB=4,AD=2,△PAD為正三角形,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l.
(1)求證:l∥EF;
(2)求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合P={x|x2-2x-8≤0},Q={x|x≥a},(∁RP)∪Q=R,則a的取值范圍是( 。
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知等比數(shù)列{an}的各項均為正數(shù),且a1+2a2=5,4a32=a2a6
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項公式;
(3)設(shè)cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=sin(ωx)(ω>0)在$[{\frac{π}{4},\frac{π}{2}}]$上為減函數(shù),則ω的取值范圍為(  )
A.(0,3]B.(0,4]C.[2,3]D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案