20.設(shè)tanα,tanβ是方程x2+3x-2=0的兩個根,則tan(α+β)的值為( 。
A.-3B.-1C.1D.3

分析 由根與系數(shù)的關(guān)系求得tanα+tanβ=-3,tanα•tanβ=-2,代入兩角和的正切得答案.

解答 解:由題意,tanα+tanβ=-3,tanα•tanβ=-2,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}=\frac{-3}{1-(-2)}=-1$.
故選:B.

點(diǎn)評 本題考查兩角和與差的正切,考查一元二次方程的根與系數(shù)的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}2{e^{x-1}},x<2\\{log_3}({{x^2}-1}),x≥2\end{array}\right.$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:${16^{\frac{1}{2}}}+{(\frac{1}{81})^{-0.25}}-{(-\frac{1}{2})^0}$
化簡:$(2{a^{\frac{1}{4}}}{b^{-\frac{1}{3}}})(-3{a^{-\frac{1}{2}}}{b^{\frac{2}{3}}})÷(-\frac{1}{4}{a^{-\frac{1}{4}}}{b^{-\frac{2}{3}}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求過直線x+2y-8=0與2x-y-1=0的交點(diǎn)且被兩直線l1:3x+4y-7=0和12:3x+4y+8=0所截得的線段長|AB|=3$\sqrt{2}$的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)f(x)=sinωx-cosωx+1(ω>0)的圖象向左平移$\frac{π}{4}$個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)的相鄰兩個零點(diǎn)之差的絕對值等于$\frac{π}{2}$,則函數(shù)y=g(x)的一個單調(diào)遞減區(qū)間是(  )
A.[0,$\frac{π}{8}$]B.[$\frac{π}{8}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{π}{8}$,$\frac{5π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an},a2+a3+a4=15,an>0,且a2,a3+4,a4+20為等比數(shù)列{bn}的前三項(xiàng),
(1)求{an},{bn}的通項(xiàng)公式.
(2)設(shè)數(shù)列dn=$\frac{2}{{a}_{n}{a}_{n+1}}$的前n項(xiàng)和為Tn,求Tn
(3)若數(shù)列cn=an•bn,求數(shù)列{cn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面向量$\overrightarrow a,\overrightarrow b$,$\overrightarrow a=({-1,1}),\overrightarrow b=({2,k})$,若$\overrightarrow a∥\overrightarrow b$,則實(shí)數(shù)k=( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,飛機(jī)的航線和山頂在同一個鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1 000km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過1min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):$\sqrt{3}$≈1.732)( 。
A.11.4 kmB.6.6 kmC.6.5 kmD.5.6 km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;   
②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;  
④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
⑥若a?α,b?α,a⊥c,b⊥c,則a∥b.
其中真命題是①④.(把符合條件的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案