2.已知函數(shù)y=f(x)滿足f(x+1)=x+3a,且f(a)=3.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+1在(0,2)上具有單調(diào)性,λ<0,求g(λ)的取值范圍.

分析 (1)利用配湊法進(jìn)行求解即可.
(2)求出函數(shù)g(x)的表達(dá)式,結(jié)合一元二次函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:(1)∵f(x+1)=x+3a=x+1+3a-1,
∴f(x)=x+3a-1,
∵f(a)=3,∴f(a)=a+3a-1=4a-1=3,
得4a=4,則a=1,
即函數(shù)f(x)的解析式f(x)=x+2;
(2)g(x)=x•f(x)+λf(x)+1=x•(x+2)+λ(x+2)+1
=x2+(2+λ)x+2λ+1,
函數(shù)的對(duì)稱(chēng)軸為x=-$\frac{2+λ}{2}$,
若函數(shù)g(x)在(0,2)上具有單調(diào)性,λ<0,
則-$\frac{2+λ}{2}$≤0或-$\frac{2+λ}{2}$≥2,
即λ≥-2或λ≤-6,
∵λ<0,
∴λ≤-6或-2≤λ<0,
則g(λ)的取值范圍是λ≤-6或-2≤λ<0.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解以及函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)$f(x)=\frac{2x}{x-1}(x≥3)$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當(dāng)x∈[0,2]時(shí),F(xiàn)(x)=f(x)-g(x)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若m∈(-1,0),設(shè)函數(shù)$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,求證:對(duì)任意x1,x2∈[1,1-m],G(x1)<H(x2)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+t,t∈R.
(Ⅰ)如果函數(shù)f(x)是R上的奇函數(shù),求實(shí)數(shù)t的值.
(Ⅱ)判斷f(x)在R上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最小內(nèi)角的余弦值等于$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若空間四條直線a、b、c、d,兩個(gè)平面α、β,滿足a⊥b,c⊥d,a⊥α,c⊥α,則( 。
A.b∥αB.c⊥bC.b∥dD.b與d是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過(guò)x的最大整數(shù),則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,$∠C=\frac{π}{4}$,AB=2,$AC=\sqrt{6}$,則cosB的值為(  )
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$或$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)$\left\{\begin{array}{l}{{a}^{x}-2a,x>0}\\{-4ax+a,x≤0}\end{array}\right.$,其中a>0,且a≠1,若f(x)在R上單調(diào),則a的取值范圍是( 。
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案