14.設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過x的最大整數(shù),則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

分析 構(gòu)造bn=an+1-an,則b1=a2-a1=4,由題意可得(an+2-an+1)-(an+1-an)=bn+1-bn=2,利用等差數(shù)列的通項公式可得bn=an+1-an=2n+2,再利用“累加求和”方法可得an=n(n+1),可得$\frac{1}{{a}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用取整數(shù)函數(shù)即可得出.

解答 解:構(gòu)造bn=an+1-an,則b1=a2-a1=4,
由題意可得(an+2-an+1)-(an+1-an)=bn+1-bn=2,
故數(shù)列{bn}是4為首項2為公差的等差數(shù)列,
故bn=an+1-an=4+2(n-1)=2n+2,
故a2-a1=4,a3-a2=6,a4-a3=8,…,an-an-1=2n,
以上n-1個式子相加可得an-a1=4+6+…+2n=$\frac{(n-1)(4+2n)}{2}$,解得an=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…$+$\frac{1}{{a}_{n}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$,
∴$\frac{2017}{{a}_{1}}+\frac{2017}{{a}_{2}}+$…+$\frac{2017}{{a}_{2017}}$=2017-$\frac{2017}{2018}$
則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=$[2016+\frac{1}{2018}]$=2016.
故答案為:2016.

點評 本題考查了構(gòu)造方法、等差數(shù)列的通項公式可、“累加求和”方法、“裂項求和”方法、取整數(shù)函數(shù),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.10名象棋選手進(jìn)行單循環(huán)賽(即每兩名選手比賽一場).規(guī)定兩人對局勝者得2分,平局各得1分,負(fù)者得0分,并按總得分由高到低進(jìn)行排序.比賽結(jié)束后,10名選手的得分各不相同,且第二名的得分是最后五名選手得分之和的$\frac{4}{5}$.則第二名選手的得分是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=loga(x-1)-2(a>0且a≠1),則函數(shù)恒過定點(2,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)y=f(x)滿足f(x+1)=x+3a,且f(a)=3.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+1在(0,2)上具有單調(diào)性,λ<0,求g(λ)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={a,1},B={a2,0},那么“a=-1”是“A∩B≠∅”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=5-2xC.y=|x|D.y=-2x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓錐的底面積為3π,高為3,則該圓錐的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.我市隨機(jī)抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]
(Ⅰ)求直方圖中x的值
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若全市共有企業(yè)1300個,試估計全市有多少企業(yè)可以申請政策優(yōu)惠.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{8}{3}$B.4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.8

查看答案和解析>>

同步練習(xí)冊答案