9.已知函數(shù)f(x)=ex+ae-x(a∈R),其導(dǎo)函數(shù)f(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則切點(diǎn)的坐標(biāo)為$({ln2,\frac{5}{2}})$.

分析 已知切線的斜率,要求切點(diǎn)的橫坐標(biāo)必須先求出切線的方程,我們可從奇函數(shù)入手求出切線的方程.

解答 解:對f(x)=ex+a•e-x求導(dǎo)得
f′(x)=ex-ae-x
又f′(x)是奇函數(shù),故
f′(0)=1-a=0
解得a=1,
故有f′(x)=ex-e-x
設(shè)切點(diǎn)為(x0,y0),
則f′(x0)=${e}^{{x}_{0}}$-${e}^{-{x}_{0}}$=$\frac{3}{2}$,
得${e}^{{x}_{0}}$=2或${e}^{{x}_{0}}$=-$\frac{1}{2}$(舍去),
得x0=ln2.
∴切點(diǎn)的坐標(biāo)為$({ln2,\frac{5}{2}})$.
故答案為:$({ln2,\frac{5}{2}})$.

點(diǎn)評 熟悉奇函數(shù)的性質(zhì)是求解此題的關(guān)鍵,奇函數(shù)定義域若包含x=0,則一定過原點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如下圖所示的程序框圖,輸出S的值是( 。
A.30B.10C.15D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若角α的終邊落在直線y=2x上,求sin2α-cos2α+sinαcosα的值( 。
A.1B.2C.±2D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,$\frac{cosC}{sinC}$=$\frac{cosA+cosB}{sinA+sinB}$.
(1)求∠C的大;
(2)若c=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y=tan({x-\frac{π}{3}})$的單調(diào)增區(qū)間為$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{x^2}{25}+\frac{y^2}{18}=1$的左右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,且|PF1|=6,則∠F1PF2=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)若角θ的終邊過P(-4t,3t)(t>0),求2sinθ+cosθ的值.
(2)已知角α的終邊上一點(diǎn)P的坐標(biāo)為($x,-\sqrt{3}$)(x≠0),且$cosα=\frac{{\sqrt{2}}}{4}x$,求sinα和tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8B.$6\sqrt{2}$C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.
(1)證明:平面AEF⊥平面ACC1A1;
(2)若AA1=3,求點(diǎn)E到平面ACF的距離.

查看答案和解析>>

同步練習(xí)冊答案