分析 根據(jù)正切函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解即可.
解答 解:由kπ-$\frac{π}{2}$<x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{6}$<x-$\frac{π}{3}$<kπ+$\frac{5π}{6}$,k∈Z,
即函數(shù)的單調(diào)遞增區(qū)間為$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$;
故答案為:$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的單調(diào)區(qū)間的求解,根據(jù)正切函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2或-1 | B. | $\frac{{-1±\sqrt{5}}}{2}$ | C. | $\frac{{1±\sqrt{5}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com