17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,則函數(shù)f(x)的值域?yàn)椋ā 。?table class="qanwser">A.[-1,+∞)B.(-1,+∞)C.[-$\frac{1}{2}$,+∞)D.R

分析 畫(huà)出分段函數(shù)的圖象,然后判斷函數(shù)的值域即可.

解答 解:根據(jù)分段函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,的圖象可知,該函數(shù)的值域?yàn)椋?1,+∞).

故選:B.

點(diǎn)評(píng) 本題考查分段函數(shù)的圖象與性質(zhì).考查數(shù)形結(jié)合以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在梯形ABCD中,AD∥BC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=4,AC與BD相交于點(diǎn)E,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,則$\overrightarrow{AE}$•$\overrightarrow{CD}$=-$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)(x,y)在△ABC所包圍的陰影區(qū)域內(nèi)(包括邊界),若有且僅有B(4,2)是使得z=ax-y取得最大值的最優(yōu)解,則實(shí)數(shù)a的取值范圍為(  )
A.-1<a<1B.-1≤a≤1C.-1≤a<1D.-1<a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}的公差不為0,前n項(xiàng)和為Sn,S5=25,S1,S2,S4成等比數(shù)列.
(1)求an與Sn
(2)設(shè)${b_n}=\frac{2n+1}{{{S_n}{S_{n+1}}}}$,求證:b1+b2+b3+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=$\sqrt{3}$,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求點(diǎn)D到平面ABC1的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(Ⅰ)已知函數(shù)f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集為{x|x≤-2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+,且a+b+c=m,求證:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{2m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為$\frac{π}{2}$.
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x-1,求g(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知O為△ABC的外心,且$\overrightarrow{BO}=λ\overrightarrow{BA}+μ\overrightarrow{BC}$.
①若∠C=90°,則λ+μ=$\frac{1}{2}$;
②若∠ABC=60°,則λ+μ的最大值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是拋物線(xiàn)C:y2=8x上的點(diǎn),F(xiàn)是拋物線(xiàn)C上的焦點(diǎn),若|PF1|+|PF2|+|PF3|+|PF4|=20,則x1+x2+x3+x4等于( 。
A.8B.10C.12D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案