2.(Ⅰ)已知函數(shù)f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集為{x|x≤-2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+,且a+b+c=m,求證:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{2m}$.

分析 (Ⅰ)化簡函數(shù)f(x)=|x+1|+|x-a|(a>0)為分段函數(shù),然后通過不等式f(x)≥5的解集為{x|x≤-2或x≥3},求a的值;
(Ⅱ)利用“1”的代換,利用基本不等式轉(zhuǎn)化證明即可.

解答 (本小題滿分10分)
解:(Ⅰ) 因?yàn)閍>0,所以$f(x)=|x+1|+|x-a|=\left\{\begin{array}{l}-2x+a-1,x<-1\\ a+1,-1≤x<a\\ 2x-a+1,x≥a\end{array}\right.$,
又因?yàn)椴坏仁絝(x)≥5的解集為{x|x≤-2或x≥3},就是x=-2或x=3時,f(x)=5,解得a=2.(5分)
(Ⅱ)證明:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{{(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})(a+b+b+c+c+a)}}{2m}$
=$\frac{{1+\frac{b+c}{a+b}+\frac{c+a}{a+b}+1+\frac{a+b}{b+c}+\frac{c+a}{b+c}+1+\frac{a+b}{c+a}+\frac{b+c}{c+a}}}{2m}$
=$\frac{{3+\frac{b+c}{a+b}+\frac{a+b}{b+c}+\frac{c+a}{b+c}+\frac{b+c}{c+a}+\frac{a+b}{c+a}+\frac{c+a}{a+b}}}{2m}≥\frac{9}{2m}$(10分)

點(diǎn)評 本小題主要考查含絕對值不等式以及不等式證明的相關(guān)知識,本小題重點(diǎn)考查考生的化歸與轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知點(diǎn)R的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求點(diǎn)R的直角坐標(biāo),化曲線C的參數(shù)方程為普通方程;
(2)設(shè)P為曲線C上一動點(diǎn),以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值,及此時P點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.賭博有陷阱.某種賭博游戲每局的規(guī)則是:參與者現(xiàn)在從標(biāo)有5、6、7、8、9的相同小球中隨機(jī)摸取一個,將小球上的數(shù)字作為其賭金(單位:元);隨后放回該小球,再隨機(jī)摸取兩個小球,將兩個小球上數(shù)字之差的絕對值的2倍作為其資金(單位:元).若隨機(jī)變量ξ和η分別表示參與者在每一局賭博游戲中的賭金與資金,則Eξ-Eη=3(元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.醫(yī)學(xué)上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項(xiàng)指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒有影響.
(Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項(xiàng)指標(biāo)H和V都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,則函數(shù)f(x)的值域?yàn)椋ā 。?table class="qanwser">A.[-1,+∞)B.(-1,+∞)C.[-$\frac{1}{2}$,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.秦九韶是我國南宋時期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項(xiàng)式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項(xiàng)該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(  )
A.5B.12C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{1}{lnx}$的大致圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{lnx}{ax}$(a>0).
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若$f(x)<\frac{1}{{\sqrt{x}}}$恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0,使得當(dāng)x∈(x0,+∞),恒有f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在一次全國數(shù)學(xué)競賽中,某市3000名參賽學(xué)生的初賽成績統(tǒng)計(jì)如圖所示.
(1)求a的值,并估計(jì)該市學(xué)生在本次數(shù)學(xué)競賽中,成績在的[80,90)上的學(xué)生人數(shù);
(2)若在本次考試中選取1500人入圍決賽,則進(jìn)入復(fù)賽學(xué)生的分?jǐn)?shù)應(yīng)當(dāng)如何制定(結(jié)果用分?jǐn)?shù)表示);
(3 ) 若以該市考生的成績情況估計(jì)全省考生的成績情況,從全省考生中隨機(jī)抽取4名考生,記成績在80分以上(含80分)的考生人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案