已知a,b∈R+,且方程x2-(3a+2b-6)x+a+b-3=0的兩根分別為一個(gè)橢圓和一個(gè)雙曲線的離心率,則3a+b的取值范圍為( 。
A、(0,6)
B、(4,+∞)
C、(0,5)
D、(5,+∞)
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先,確定所給方程的根的分布,然后根據(jù)橢圓和雙曲線離心率的取值范圍,畫出可行域,從而確定3a+b的取值范圍.
解答: 解:∵方程x2-(3a+2b-6)x+a+b-3=0的兩根分別為
一個(gè)橢圓和一個(gè)雙曲線的離心率,
∴方程有兩個(gè)正實(shí)根,且一個(gè)根比1大,一個(gè)根比1。
設(shè)函數(shù)f(x)=x2-(3a+2b-6)x+a+b-3,
x1+x2>0
x1x2>0
f(1)<0

3a+2b-6>0
a+b-3>0
2a+b-4>0
,且a,b∈R+,
對(duì)應(yīng)的可行域如下圖所示:
設(shè)z=3a+b,
顯然,過點(diǎn)A時(shí),此時(shí)z有最小值4,
故z∈(4,+∞).
故選:B.
點(diǎn)評(píng):本題重點(diǎn)考查了方程的根分布、橢圓的離心率及其性質(zhì)、雙曲線的離心率及其性質(zhì)、線性規(guī)劃等知識(shí),屬于中檔題,解題關(guān)鍵是準(zhǔn)確理解線性規(guī)劃思想在解題中的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=lg(x2-x+1),則不等式x•f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(cosθ-2sinθ,sinθ)
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,0<θ<π,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,
π
2
≤φ≤π
)的部分圖象,其中|AB|=5.
(1)求函數(shù)在AB段的單調(diào)遞減區(qū)間;
(2)若x∈[-3,0]時(shí),求A,B段的最值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PDC是邊長為4的正三角形且側(cè)面PDC⊥面ABCD,E為PC的中點(diǎn).
(Ⅰ)求證PA∥面EDB;
(Ⅱ)求異面直線PA與DE所成角的余弦值;
(Ⅲ)求點(diǎn)D到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-
1
2
x2+bx+c在x=1時(shí)取得極值,且當(dāng)x∈[-1,2]時(shí),f(x)<c2恒成立.
(1)求實(shí)數(shù)b的值;
(2)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(-2,1)引拋物線y2=4x的兩條切線,切點(diǎn)分別為A、B,F(xiàn)是拋物線的焦點(diǎn),則直線PF與直線AB的斜率之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(0,1)及B(0,-1),且與直線x+y-1=0相切.
(1)求圓C的方程;
(2)在x軸上是否存在點(diǎn)P(異于坐標(biāo)原點(diǎn)),使得對(duì)圓C上的任意一點(diǎn)M,
MP
MO
(O為坐標(biāo)原點(diǎn))的值均保持不變(即為同一常數(shù)),若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=3ax-2a+1在區(qū)間(-1,1)上存在一個(gè)零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案